
SPIFF: Selective Preservation of Image Fidelity for
Bandwidth-constrained Heterogeneous Networks
Marco Palena

CNIT
Parma, Italy

Jose A. Ayala-Romero
NEC Laboratories Europe

Madrid, Spain

Andres Garcia-Saavedra
NEC Laboratories Europe

Madrid, Spain

Carla Fabiana Chiasserini
Politecnico di Torino and CNIT

Torino, Italy

Abstract—Transmitting rich visual data in resource-
constrained environments like Non-Terrestrial Networks
(NTNs) poses a significant challenge. While current
Semantic Communication (SC) approaches reduce bandwidth
consumption, they often lack flexibility and/or compromise the
perceptual fidelity of critical details. This paper first analyzes
the fundamental trade-offs that exist between perceptual fidelity,
semantic fidelity, and bandwidth utilization. It then introduces
SPIFF, an SC-Generative AI framework that, by supporting
selective fidelity, enables fine-grained control over the above
trade-offs while meeting delay requirements. SPIFF features
a lightweight, semantic-aware encoder performing semantic
segmentation and applying a novel patch preservation strategy
that retains perceptually significant regions while adapting
lower-relevance areas compression to bandwidth availability.
SPIFF also offloads high-complexity reconstruction tasks to a
Generative AI-enabled decoder at the receiver, thus addressing
asymmetric computation requirements. To support adaptation
under dynamic conditions, while meeting system and application
constraints, we equip SPIFF with a learning-based decision
engine that is able to cope with the system non-linearities and
effectively tune SPIFF’s configuration online. We evaluate SPIFF
by implementing a full encoder-decoder pipeline. Results show
that SPIFF fulfills perceptual reconstruction quality in scenarios
where SC fails, and improves over state-of-the-art solutions both
bandwidth savings (by up to 21%) and perceptual fidelity (by
up to 13%).

Index Terms—Non-terrestrial networks, Bandwidth utilization,
Goal-oriented computing, Semantic communications

I. INTRODUCTION

The ever-increasing demand for transmitting rich visual
data poses a significant challenge for communication systems
operating under severe resource constraints. For systems with
limited bandwidth, power, or onboard computing—particularly
at the transmitter, such as remote IoT sensors, autonomous
drones, or satellites—the sheer volume of raw pixel data cre-
ates a critical bottleneck, hindering applications from remote
monitoring to scientific exploration. To address this fundamen-
tal challenge, Semantic Communication (SC) is emerging as
a transformative paradigm [1]. By leveraging Generative AI
(GAI), SC shifts the focus from transmitting a perfect replica
of the source data to conveying its essential semantic meaning,
promising dramatic reductions in bandwidth consumption by
discarding redundant information.
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This challenge is exceptionally well-exemplified by Non-
Terrestrial Networks (NTNs). With extensive Low-Earth Orbit
(LEO) deployments by entities like SpaceX launching over
7,000 satellites since 2019 [2], [3], NTNs are becoming vital
for global connectivity. However, they face a fundamental con-
flict: they operate under strict spectrum and efficiency limits,
with recent tests showing mobile download speeds of only
17 Mbps [4]. This limitation is severely strained by immense
data demands, such as Earth observation missions generating
petabytes of data cumulatively and terabytes daily [5], [6]. This
stark combination of physical constraints and massive data
requirements makes NTNs a critical and highly demanding
application domain for advanced SC technologies.

The problem. While promising in principle, current GAI-
enabled SC solutions have fundamental limitations that make
them ill-suited for deployment in demanding, general-purpose
environments. First, they are often tailor-made for specific
applications with predictable, static scenes, such as highway
surveillance [7], preventing them from handling diverse, un-
restricted content. Second, in their quest for aggressive com-
pression, these solutions substantially compromise perceptual
fidelity (PF)—the visual accuracy of the reconstructed data [8],
[9]. This is a critical flaw where content streams contain
specific elements that cannot tolerate such fidelity degradation.

To illustrate this, consider the example in Fig. 1. A con-
ventional SC system1 can reconstruct the original image (a)
as shown in (c). While conveying the core meaning, i.e., high
semantic fidelity (SF), it suffers a catastrophic PF loss, render-
ing important details unrecognizable2. These details constitute
the high-relevance segments (b). This issue is particularly
acute in scenarios that handle diverse content. As quantified
in Fig. 2, general-purpose visual data often has a high density
of perceptually relevant information. For instance, the median
image in COCO-Stuff (a dataset with content targeting object
recognition) has 40% high-relevance content, compared to just
10% for the specialized MaSTr1325 dataset (with content re-
lated to maritime obstacle detection). This observation makes
a one-size-fits-all compression strategy ineffective.

The solution. Consequently, a robust SC system for
resource-constrained networks such as NTNs must support se-
lective fidelity: preserving critical elements while aggressively

1I.e., SC methods that maximize semantic fidelity and compression rate.
2PF and SF scores, defined in Sec. II, range between 0 (worst) and 1 (best).



(a) Original (b) Relevance Map (c) Standard SC (d) SPIFF (e) SPIFF
Fig. 1. Demonstration of the fidelity-compression trade-off in GAI-enabled Semantic Communication. (a) Original image. (b) Image segmented into high
(yellow) and low-relevance (purple) regions. (c) A standard SC method yields high compression but poor perceptual fidelity (PF). (d-e) Our proposed method,
SPIFF, selectively preserves high-relevance regions. For (c-e), we report fraction of reconstructed pixels (%), bandwidth savings (%), and PF and Semantic
Fidelity (SF) for high- and low-relevance regions. Fidelity scores are normalized to a 0-1 scale, where higher is better. Full technical details are in Sec. IV.

Fig. 2. Empirical CDF of the pixel relevance ratio for three distinct datasets,
introduced in Table I. See Sec. II-B for details on the datasets.

compressing non-relevant content. To this end, we propose
SPIFF (Selective Preservation of Image Fidelity Framework),
a novel SC framework for images that enables a fine-grained
trade-off between the PF of specific image regions, overall
semantic integrity, and transmission bandwidth.

Unlike conventional methods that apply a uniform compres-
sion policy, our framework provides dynamic, content-aware
control, allowing it to operate anywhere along a continuous
spectrum bounded by two extremes: transmitting the original
raw data (0% savings) and the highly compressed output of a
conventional SC system (Fig. 1(c)). The outputs in Fig. 1(d)
and (e) are merely two examples of the numerous intermediate
operating points SPIFF can generate on demand to meet
specific system constraints and task fidelity requirements.

Challenges and our contributions. The practical deploy-
ment of such a system presents two significant operational
challenges: (1) Asymmetric Computational Constraints, where
the transmitter (e.g., a satellite) is resource-constrained while
the receiver (a ground station) is not; and (2) Online Config-
uration Optimization, the need to dynamically tune system
parameters in response to variable network conditions and
content characteristics, without a priori knowledge of the
complex relationship between configuration and performance.

This paper addresses these challenges with two core con-
tributions. First, we design the SPIFF pipeline, which sup-
ports selective fidelity while explicitly handling asymmetric
computation. Its lightweight encoder identifies low-relevance
semantic regions and applies a novel patch preservation tech-
nique, strategically removing only a fraction of patches from
these regions, before transmission. This offloads the demand-
ing generative inpainting task to the more powerful receiver.
Second, to enable online adaptation, we introduce the BITS
(Bit-efficient Image Transmission via Satellite) formulation

NTN

Source satellite

GatewaySource IoT
Distribution 

Network (DN)
End users

Fig. 3. Reference NTN scenario, with two data flows in different colors: an
IoT resource-constrained transmitter and a satellite. The GW performs several
operations on the images: i) semantic segmentation, ii) patch generation, and
iii) image preparation and compression. Then the images are sent through
a satellite network to a computationally capable distribution network, where
image regeneration is executed. The regenerated image is finally delivered to
the user. A similar scenario holds when a satellite is the image source.

and a learning-based decision-making engine that efficiently
optimizes SPIFF’s configuration in real-time.

In summary, our main contributions are as follows:
• A novel SC framework, SPIFF, enabling selective, dynam-

ically adaptive fidelity for efficient image transmission.
• A lightweight, content-aware encoder architecture featur-

ing a novel patch preservation mechanism, designed for
resource-constrained transmitters.

• A GAI-decoder at the receiver, reconstructing the full
image by properly exploiting the transmitted features.

• An optimization formulation and a learning-based so-
lution engine that allows real-time adaptation of our
framework in unpredictable NTN environments.

• An implementation of SPIFF’s full encoder-decoder
pipeline and a thorough experimental evaluation of its
performance. Results show that SPIFF meets perceptual
quality targets in scenarios where SC fails, and improves
both bandwidth savings (by up to 21%) and perceptual
fidelity (by up to 13%) w.r.t. state-of-the-art solutions.

II. REFERENCE SCENARIO AND ANALYSIS

This section details our reference scenario, formalizes the
concept of perceptual relevance, and presents a quantitative
analysis of the fidelity-bandwidth trade-off that establishes the
empirical foundation for our work.

A. Reference Scenario and Evaluation Metrics

We consider the reference scenario depicted in Fig. 3, where
resource-constrained devices at the network edge generate and
transmit image data through an NTN. These devices may be



TABLE I
PERCEPTUAL RELEVANCE RANKING OF THE SEMANTIC CATEGORIES IN

THREE DIFFERENT DATASETS

Relevance level Semantic Categories
Task 1: Object detection (COCO-Stuff dataset)

Low water, ground, sky, plant
Medium solid, structural, building, textile, furniture, window, floor,

ceiling, wall, rawmaterial
High sports, accessory, animal, outdoor, vehicle, person, indoor,

appliance, electronic, furniture, food, kitchen
Task 2: Semantic Segmentation of Satellite Imagery (SSSID dataset)

Low water body, vegetation, flooded, trees, grass, background
Medium industrial site, sports complex, water tank, power lines,

construction site, trampoline, garbage bins, satel-
lite antenna, window, street light, chimney, solar panels,
swimming pool, secondary structure, roof

High boat, parking area, road, vehicle
Task 3: Maritime Obstacle Detection (MaSTr1325 dataset)

Low water, sky
Medium obstacle
High unknown

terrestrial nodes (e.g., IoT sensors) or non-terrestrial assets
(e.g., imaging satellites). The data is relayed via LEO satellites
to a ground station and then to a computationally capable
server in the distribution network (DN). At the destination,
images are used for visualization or downstream machine
perception tasks. This model captures numerous use cases such
as precision agriculture and maritime navigation.

Operating in this scenario imposes three primary challenges:
(i) strict bandwidth constraints due to spectrum scarcity, (ii) the
need to preserve the PF of critical image segments for down-
stream tasks, and (iii) the requirement for bounded end-to-end
delay. The first two challenges create a fundamental trade-off
between data volume and image quality, which we evaluate
using two distinct metrics.

Perceptual Fidelity (PF) assesses subjective visual similar-
ity. We quantify PF using the Learned Perceptual Image Patch
Similarity (LPIPS) score [10], which ranges from 0 (identical)
to 1 (dissimilar). We report our results using 1−LPIPS, so that
higher values signify higher perceptual fidelity.

Semantic Fidelity (SF) measures the preservation of high-
level meaning. We use CLIPScore [11], which ranges from −1
to 1 (perfect alignment). We normalize this to a [0, 1] scale to
match that of the PF score.

B. Perceptual Relevance and Fidelity-Bandwidth Trade-offs

Preserving uniform PF across an entire image is often
unnecessary and wasteful [12], [13]. We thus formalize the
concept of perceptual relevance:

Definition (Category-wise Perceptual Relevance). The mea-
sure of how important it is to preserve the original visual
appearance of a given semantic category for the task at hand.

Table I exemplifies the perceptual relevance ranking for
three tasks. This concept is critical because, as shown in Fig. 2
with three public datasets aimed at different applications,
different tasks have diverse proportions of high/medium/low-
relevant pixels, making a selective approach essential. This
motivates the central tenet of our work: selectively preserving
higher relevance regions while generatively reconstructing
lower relevance ones can dramatically reduce bandwidth with
minimal impact on task performance.

To quantify the effects of this selective approach, we
emulate the transmission pipeline of our SPIFF framework,
as detailed in Sec. IV. The core idea is to split the image
to transmit into regions with different perceptual relevance.
First, high-relevance segments are preserved within a cropped
bounding box. Second, from the remaining lower-relevance
regions, we use a patch preservation technique to sample
random patches, prioritizing those from medium-relevance
over low-relevance areas. These selected patches are then
assembled into a compact “patch grid.” The transmitter config-
uration is controlled by two key parameters: (i) the size of the
high-relevance bounding box, and (ii) the fraction of patches
preserved to create the patch grid. These two parameters
dictate the final data volume and quality of the reconstruction.

Both components—the cropped high-relevance image and
the patch grid (corresponding to medium-low relevance
regions)—are transmitted to the receiver. There, a generative
inpainting model uses both pieces of information to reconstruct
the full, original image. Specifically, we use Stable Diffusion 2,
a Latent Diffusion Model (LDM) that reconstructs content by
iteratively refining a noisy signal [14]. The number of these
iterations, or denoising steps, directly controls the computa-
tional effort required at the receiver.

Our analysis of this process yields three key insights. First,
by using an optimized configuration for a single image, we
can trace a clear and controllable trade-off curve, as shown
in Fig. 4. This demonstrates that there exists a relation-
ship between the configuration parameters (namely, the high-
relevance bounding box and the lower-relevance patches), the
resulting PF and SF, and the bandwidth that can be saved with
respect to transmitting an image compressed using a standard
image codec (namely, JPEG).

Second, the approach inherently accommodates asymmetric
computation, typical of many network environments exhibiting
a high level of heterogeneity. The encoder performs compar-
atively lightweight tasks (segmentation and patch sampling),
while the decoder handles the more computationally intensive
generative reconstruction. Fig. 5, obtained using COCO-Stuff
images, provides critical support for the efficiency of this
design. It shows that reconstruction quality is driven by the
richness of the transmitted information (the preserved patches),
not the raw computational effort at the receiver (denoising
steps). This confirms that our lightweight encoder effectively
controls the final quality, while the decoder’s computational
load still remains manageable as few denoising steps suffice.

Third, and most critically, this trade-off is not universal.
Fig. 6 visualizes this complexity by plotting the performance
of a wide range of configurations (i.e., different bounding box
sizes and patch preservation fractions) for several images from
the COCO-Stuff dataset. Each point in the plot represents a
specific configuration outcome in terms of bandwidth savings
and PF. For every image, the set of optimal configurations
forms a Pareto frontier of this point cloud. The crucial ob-
servation is that this optimal frontier is highly distinct for
each image. This establishes the final, critical challenge: the
optimal transmission strategy for an arbitrary image, which



Fig. 4. Trade-off between PF and SF, and bandwidth savings (%), for a given image as the fraction of
preserved pixels p and the size of the bounding box β varies. Bandwidth savings account for the high-
relevance bounding box and lower relevance patches and are normalized w.r.t. the original image.
Visual examples show the quality at different preservation levels, also highlighting the different sizes
of the bounding box (in red).

Fig. 5. PF score, SF score, and GPU inpainting
time vs. the number of LDM denoising steps, and for
80% and 5% bandwidth savings. The results show that
quality is largely insensitive to the number of steps,
validating our architectural choices.
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Fig. 6. The bandwidth savings-PF trade-off is unique to each image, as shown
for four different images (represented by colors) from the COCO-Stuff dataset.

lies on this unknown frontier, cannot be predetermined. This
reality necessitates an intelligent, online learning approach to
discover these optimal configurations in real-time.

III. RELATED WORK
Our work mainly relates to two research areas: semantic

communication and deep learning-based image compression.
Semantic communication. SC is expected to be a critical

technology for next-generation networks [15], and it is already
driving advancements in a broad range of applications [16].
Generative methods have recently been applied to SC. Notably,
generative adversarial networks (GANs) have been adapted for
tasks like image compression [17], variational autoencoders
[18], and normalizing flows [17]. However, some of these
works incorrectly mix the semantics with stylistic elements,
limiting SC full potential. More recently, the emergence of
diffusion models represents a significant paradigm shift in
generative modeling, achieving state-of-the-art performance
in diverse domains such as image [19], audio [20], and
video generation [21]. These models operate by progressively
refining a standard Gaussian noise distribution via an iterative
denoising process to produce novel content. This methodology
provides superior training stability compared to GANs [22].
Moreover, diffusion models have recently been applied to SC
as a new benchmark, generating high-fidelity, semantically
coherent scenes that outperform prior methods [23].

Deep learning-based image compression. Some works
rely on joint source channel coding (JSCC), which combines
source coding and channel coding into a single, integrated
process [24], [25]. The objective is to achieve good perfor-
mance in very challenging channel conditions such as very low
SNR or small bandwidth. The approach in [24] encodes image
pixels directly as noise-resistant channel symbols, a strategy
that surpasses standard separation-based digital communica-
tion at any SNR. The attention-based JSCC framework in [25]

is notable for its ability to function effectively across different
SNRs during transmission. However, a critical drawback of the
aforementioned approaches is their lack of semantic aware-
ness, i.e., the interpretation of the image content is missing.

Other works propose deep learning-based codecs to solve
the rate-distortion optimization problem [26], [27]. By pixel-
by-pixel processing, these methods aim at perfect data recov-
ery, pushing the boundaries of Shannon’s compression theory.
The downside is that aggressively compressed images are vi-
sually poor, suffering from artifacts like blocking, ringing, and
blurriness [28]. This degradation also harms the performance
of computer vision tasks such as classification and detection
[29]. Consequently, simply minimizing per-pixel errors can be
a wasteful strategy that incurs unnecessary data overhead.

Some studies leverage semantic similarity as the reconstruc-
tion criterion, i.e., they tolerate some pixel-level distortion
and evaluate the usefulness of the reconstructed image. For
example, [30] applies semantic similarity in low-bitrate facial
image compression by filtering task-irrelevant information.
Nevertheless, these works only consider face recognition and
are not generalizable to other tasks. The work in [31] adapts
a traditional hybrid coding framework for semantic tasks by
using reinforcement learning to optimize bit allocation. Using
deep Q-learning to set quantization parameters, it achieves
strong results on classification, detection, and segmentation.
In contrast, [32] presents a detection-focused compression
scheme that creates a semantically structured bitstream where
each part explicitly represents a specific object; this is then
generalized to multiple tasks in [33].

Limitation of prior work. None of the above methods can
meet the semantic and perception performance targets jointly
with a low bit rate. In fact, different image regions may have
different semantic or perceptual importance and thus should
be adaptively compressed as we propose in this work.

IV. THE SPIFF SEMANTIC COMMUNICATION SYSTEM

This section details the architecture and operational work-
flow of our proposed SC framework, SPIFF. Our goal is a
generative system that intelligently partitions an image by its
perceptual relevance, ensuring high-fidelity transmission for
critical content while efficiently reconstructing less critical



(a) The SPIFF Semantic Encoder Architecture (b) The SPIFF Semantic Decoder Architecture

Fig. 7. Detailed schematics of the encoder and decoder components of the SPIFF framework.

Fig. 8. Visual walkthrough of the SPIFF pipeline. (a) Original image, (b) Semantic segmentation map, (c) High-relevance region mask, (d) Patches sampled
from background, (e) Patch grid from sampled patches, (f) Combined data for reconstruction, (g) Final reconstructed image.

regions at the receiver to save bandwidth. Fig. 7 depicts
the end-to-end architecture, with the numbered steps in the
schematics corresponding to the descriptions below.

A. System Parameters and Configuration

The behavior of the SPIFF framework is governed by a set
of parameters that define the task and control the system’s
operation. For a given application, these are:

• R∈N: The number of discrete perceptual relevance ranks
(e.g., R=3 for High, Medium, Low).

• C: The set of all task-relevant semantic categories (e.g.,
‘person’, ‘sky’).

• r : C → {0, . . . , R−1}: The relevance function that maps
each semantic category to a perceptual relevance rank.
The highest rank, R−1, signifies the most critical content.

• β∈[0, 1]: The bounding box parameter that controls the
size of the area preserved around the highest-relevance
segments, with 0 signifying that the bounding box coin-
cides with the segment size and 1 that the bounding box
is as large as the entire image.

• p : {0, . . . , R−1} → [0, 1]: The patch preservation func-
tion that maps each perceptual relevance rank to a fraction
of patches to preserve. By definition,

∑R−1
l=0 p(l)=1.

• ψss, ψcap, ψldm: Sets of hyperparameters for the un-
derlying AI models: Semantic Segmentation, optional
Image Captioning, and Latent Diffusion Model (LDM)
for reconstruction, respectively.

While these parameters define the entire operational space, our
BITS formulation (Sec. V) focuses on optimizing a specific
subset of them in real-time. This subset forms the dynamic
configuration vector xi, which we define in Sec. IV-C.
B. Framework Architecture

SPIFF consists of a lightweight semantic encoder at the
transmitter and a generative semantic decoder at the receiver.
A visual walkthrough of the pipeline is shown in Fig. 8.

1) Transmitter (Semantic Encoder): As detailed in Fig. 7a,
the encoder analyzes the input image and transforms it into a
compact representation through steps 1–7.

• Semantic Segmentation ( 1 ): The encoder first decomposes
the image into its constituent semantic parts, identifying cat-
egories from the set C. This is performed by a model like
Grounded Segment Anything [34], governed by hyperparam-
etersψss, producing a segmentation map as in Fig. 8b.
• Task-relevant Segment Extraction ( 2 ): Using the rele-
vance function r(c), this block identifies all segments with the
highest rank (i.e., s.t. r(c)=R−1). It then isolates this content
within a bounding box with size controlled by the parameter β.
The resulting high-relevance crop and its corresponding mask
(Fig. 8c) are passed forward for compression using standard
techniques.
• Patch Preservation ( 3 ): For all lower-relevance regions
located outside the bounding box from the previous step, this
block applies the patch preservation function p() to determine
the fraction of patches to sample for each category’s corre-
sponding rank (Fig. 8d). Such patches and their coordinate
metadata are consolidated into a “patch grid” (Fig. 8e).
• Image Captioning ( 4 ): In parallel, an optional captioning
model, controlled by hyperparameters ψcap, can generate a
text description of the image.
• Component Compression and Multiplexing: Finally, the
various data components—the patch grid and the high-
relevance crop ( 6 ), the associated mask ( 5 ), and the optional
text caption ( 7 )—are compressed and multiplexed into a
single bitstream.

2) Receiver (Semantic Decoder): As shown in Fig. 7b, the
receiver reconstructs the image from the incoming bitstream:
• Demultiplexing and Decompression ( 8 , 9 , 10 ): The re-
ceiver separates and decompresses the data components.
• Partial Image Recomposition ( 11 ): The high-relevance
crop and patch grid are recomposed into a single, partially
masked image using the coordinate metadata (Fig. 8f).
• Generative Reconstruction ( 12 ): The decoder uses the re-
composed image and text caption to guide a generative model
(e.g., Stable Diffusion 2 [14]), controlled by hyperparameters
ψldm, to inpaint the missing regions and produce the final
image (Fig. 8g).



C. System Configuration Vector

For real-time adaptation, our BITS formulation focuses on
the two primary parameters that control the fidelity-bandwidth
trade-off at runtime. We therefore define the dynamic config-
uration vector xi for each image Ii as xi = (βi, pi), where
(abusing the notation) βi is the parameter controlling the
size of the high-relevance bounding box and pi is the patch
preservation function that dictates the sampling fraction for
lower-relevance regions, for image Ii. The goal of our BITS
formulation, detailed in the next section, is to learn a policy
that selects the optimal configuration vector xi to adapt to
changing network conditions and content characteristics.

V. PROBLEM FORMULATION

Our aim is to design an intelligent decision-making frame-
work that dynamically selects the optimal transmission con-
figuration for each image in the NTN scenario introduced in
Sec. II. The goal is to minimize bandwidth consumption while
meeting application-specific constraints on perceptual fidelity,
semantic fidelity, and end-to-end latency. To this end, we
formally define the system model and problem at hand, named
Bit-efficient Image Transmission via Satellite (BITS).

We refer to the system in Fig. 3 and, for simplicity, focus
on a single image, Ii, generated and transmitted by a given
source to a final destination via an NTN. We consider the most
general case where the source is a ground node and images
are processed by a gateway (GW) using the SPIFF encoder
before satellite transmission. Notice that this scenario can be
easily specified to the case where satellite acts as the source
and (possibly) the GW. Also, we recall that the image is then
reconstructed at a node in the distribution network (DN).

In the above most general scenario, the entire system state
is captured by Ωt = (ωGW

t , ωNTN
t , ωDN

t ), representing the state
in terms of communication and computation resources of the
access link and the GW, the NTN, and the DN at time t
(resp.). At the GW, the image Ii is processed according to a
configuration vector xi, which encapsulates all decisions made
by SPIFF. Given Ii, the configuration xi then determines the
value of the following features:
• Size: The size of the processed image,

∑R−1
l=0 bi,l(xi, Ii),

measured in bits. This value is content-dependent and un-
known a priori for a given configuration xi.
• Fidelity: The Perceptual Fidelity (PF) and Semantic Fidelity
(SF) of the reconstructed image. For a given perceptual
relevance rank l, these are denoted by the functions f per

l (xi)
and f sem

l (xi), respectively.
• End-to-End Delay: The total latency di(xi, Ii,Ωt) required
to deliver and reconstruct the image Ii. This delay is the sum
of several components:

di(·) = dcomm
GW + dcomp

GW + dcomm
NTN + dcomp

DN + dcomm
DN (1)

where the terms represent: the communication time from
source to GW, computation time at the GW, NTN transmission
time, reconstruction (inpainting) time at the DN server, and the
DN communication time to deliver the reconstructed image at
the destination. Each component depends on the size of the

original image, the overall size of the processed image—hence,
the selected configuration vector xi—and the state (including
bandwidth availability) of the corresponding system in Ωt.

Then we formulate the BITS problem for the image Ii as:
BITS (Bit-efficient Image Transmission via Satellite)

min
xi

R−1∑
l=0

bi,l(xi, Ii) +

(
λper
l [f per

l,min − f per
l (xi)]

+

+ λsem
l [f sem

l,min − f sem
l (xi)]

+

)
(2a)

s.t. di(xi, Ii,Ωt) ≤ dmax (2b)

where [z]+=max(0, z). The objective (2a) seeks to minimize
the total number of transmitted bits for the image Ii (i.e., the
sum of the bits transmitted for each perceptual relevance rank),
while penalizing any deviation from the minimum required
fidelity targets, f per

l,min and f sem
l,min. Such a formulation thus

makes these fidelity requirements soft constraints ensuring
problem feasibility, while the associated penalty weights, λper

l

and λsem
l , make the terms in the objective function vary over a

comparable range of values while allowing for application-
specific prioritization. The constraint (2b) instead imposes
a hard deadline dmax on the end-to-end delay. Solving this
problem is highly challenging for the following reasons:
(i) High variability in the fidelity values. As shown in

Fig. 6, although there exists a correlation between the
minimum PF score and the bandwidth savings (i.e., % of
preserved pixels), the measurements exhibit a high degree
of variability. This is due to the randomness introduced by
the diffusion model as well as the specific characteristics
of each image. This variability, which we observed also
in the case of the SF score, makes it hard to accurately
predict the value of such metrics for the images at hand.

(ii) Hard constraints under uncertainty. Constraint (2b) deals
with the end-to-end delay of the system. Even when
the system state (Ωt) is fully observable, in practice the
transmission delay may suffer random variations due to
the inherent stochasticity of the system.

(iii) Unknown and complex objective function. The problem
objective includes 2·R+1 terms and a non-linear operator
((2a)), which may be hard to approximate, even by
traditional function approximators (e.g., fully connected
neural networks).

(iv) Variable objective function. The target balance between
the PF and SF scores may change over time to adapt to
different application requirements (λ’s values in (2a)).

These challenges preclude traditional optimization methods
and motivate our adoption of a learning-based approach, which
we detail in the subsequent sections.

VI. LEARNING-BASED SPIFF OPTIMIZATION

This section describes our learning-based SPIFF engine,
which addresses the above challenges and solves the BITS
problem. The solution framework architecture is depicted in
Fig. 9. The learning engine takes as input the state si, which
characterizes the image Ii, and outputs the configuration xi.
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Fig. 9. Architecture of the learning-based SPIFF solution engine.

Given that we solve the problem image by image and
assume that images are not correlated over time, the problem
can be seen as a contextual bandit problem with instantaneous
constraints. Indeed, to address the challenges (i) and (ii)
described in Sec. V (namely, the variability and stochastic
nature of the quantities in the BITS problem), the solution
engine should learn the distribution of the fidelity scores and
of the latency, and their quantiles, so that it can provide a
configuration policy that meets both the soft and the hard
constraints with very high probability. In the case of the soft
minimum fidelity constraints, the goal is to approximate a
low quantile; for the hard maximum latency constraint, a high
quantile has to be approximated. We thus propose an actor-
multi-critic architecture with distributional critics, in which the
critics approximate the distributions of the objective function
and constraints in the BITS problem, while the actor learns
from these approximations the optimal configuration policy.

Further, to address challenge (iii), the proposed solution uses
several critics to approximate the distribution of each of the
terms in (2a) separately, making the aggregated approximation
easier to accomplish. Finally, our learning architecture also
addresses challenge (iv), as it enables learning the policy as
a function of the problem hyperparameters (e.g., the λ’s),
without the need for retraining when the requirements change.

Below, we detail how to train a distributional critic
(Sec. VI-A) and learn the configuration policy (Sec. VI-B).

A. Distributional Critic Training

This section introduces the methodology to approximate
the distribution of a target function using quantile regression,
which will then be used by the distributional critics.

The value of the quantile function qτ for a distribution
X is defined as qτ=F

−1
X (τ), where τ∈[0, 1] represents a

quantile and FX(x) denotes the cumulative distribution func-
tion. To learn the distribution, we employ a neural network
(critic) trained to minimize the quantile regression loss—
an asymmetric convex function that differentially penalizes
underestimation and overestimation errors:

J τ (q̂τ ) := Ex∼X [ρτ (x− q̂τ )] . (3)

In (3), q̂τ is the estimated value of qτ , and ρτ (u):=u ·
(τ−δ[u<0]) ∀u∈R, where δ[z] is the indicator function.

The critic approximates N quantile values, qτ1 , . . . , qτN ,
by minimizing the following objective via gradient descent:∑N

i=1 J τi(q̂τi). To mitigate the non-smoothness of the quan-
tile regression loss at u=0, which can hinder the performance

of function approximators such as neural networks, we incor-
porate the quantile Huber loss [35]. This loss has a quadratic
form within the interval [−κ, κ], transitioning to the standard
quantile loss outside this range:

Jκ(u) :=

{
1
2u

2 if |u| ≤ κ

κ · (|u| − 1
2κ) otherwise.

(4)

The asymmetric quantile Huber loss is then defined as:
ρκτ (u) := |τ−δ[u<0]|Jκ(u)

κ . Replacing ρτ (u) in (3) with ρκτ (u)
yields the quantile Huber loss we use, which converges to the
quantile regression loss as κ approaches zero.

B. Learning the Optimal Configuration Policy

We now detail the architecture of the overall SPIFF learning
framework, which comprises an actor-multi-critic scheme [36].
The actor network, π(s|η,λ), outputs a continuous action (i.e.,
x) for a given state s and λ={λper

l , λsem
l , λdel}R−1

l=0 value. We
define the state s as a vector characterizing an image, with R
dimensions indicating the percentage of pixels belonging to
each perceptual relevance rank. The actor is a neural network
defined by the parameters (weights) η.

The distributional critics are denoted by C(j)(s,x|θ(j)) for
j=0, . . . , 2·R+ 1, where θ(j) are the parameters (weights) of
critic j. They provide estimations of each term in the objective
function and constraints. The aggregated cost function for a
given image, Cagg, integrates information from all critics:

Cagg(s,x, | θ) :=

C̄(0)(s,x |θ(0))+
2·R∑
j=1

λj [Fj,min −Qα(C(j)(s,x |θ(j)))]+

+ λdel[Q1−α(C(2·R+1)(s,x |θ(2·R+1)))− dmax]+ (5)

where Qα(X) represents the quantile function value of dis-
tribution X at quantile α, Fmin={f per

l,min, f
sem
l,min}

R−1
l=0 and λ

are a compact representation of the minimum PF and SF
scores, and of their associated weights, for all perceptual
relevance ranks, λdel is a penalty weight for the delay con-
straint, θ={θ(0), . . . , θ(2·R+1)} denotes the collective critic
parameters, and C̄(0)(·) is the mean of critic 0’s output
distribution. In detail, Eq. (5) comprises three terms. The first
one approximates the average of the used bits. The second
term approximates the second part of the objective function in
(2a), i.e., the penalty incurred by the violation of the minimum
fidelity scores. We recall that we consider a low quantile of
the distribution of the fidelity scores, denoted by α. Finally,
the last term captures the penalty yielded by a violation of the
maximum latency constraint. In this case, we consider a high
quantile (1 − α) of the distribution of the delay, to meet the
constraint with high probability.

The actor’s objective function is defined as V (π) =
Es∼γ [C

agg(s, π(s | η,λ) | θ)], where γ(s) represents the
stationary distribution of the states s. The update rule, derived
via the chain rule applied to the actor objective [37], is:

∇ηV (π)≈Es∼γ

[
∇aC

agg(s,x|θ) |x=π(s|η,λ) ∇ηπ(s|η,λ)
]
.
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image.
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Fig. 11. SPIFF (under different settings of the patches fraction to preserve p(0) and bounding box size β) vs. JPEG and Semantic Communication, for varying
bandwidth savings. PF and SF scores for ‘Low’ rank (left and center-left), and PF and SF scores for ‘High’ rank (center-right and right).

VII. EXPERIMENTAL EVALUATION

This section first introduces the experimental settings used
for assessing SPIFF’s performance. Then, it analyzes the
impact of different system configurations on the fidelity of
the reconstructed image and the achievable bandwidth savings,
comparing the SPIFF pipeline with traditional image encod-
ing and standard Semantic Communication (SC). Finally, it
presents the effectiveness of SPIFF’s learning engine in finding
optimal configurations against three benchmarks.

Experimental Settings. We implemented the full SPIFF
encoder-decoder pipeline (see Fig. 7) using state-of-the-art
pretrained models, as detailed in Table II. The semantic
encoder is executed on a system with 2 vCPUs (Intel Xeon
@ 2.20GHz) and 51GB of RAM, while the decoder runs on
an NVIDIA Tesla T4 GPU with 16GB memory. We focus on
a person monitoring task, thus we define the task-relevant se-
mantic categories as C={‘other’, ‘person’} and the relevance
function as r(‘other’)=0 (‘Low’ relevance) and r(‘person’)=1
(‘High’ relevance); hence, we have R=2. Experiments are
conducted on a subset of the COCO-Stuff dataset, including
1,062 images where (i) a ground-truth segmentation annotation
for ‘person’ is available, and (ii) the ‘person’ segment occupies
between 20% and 60% of the total image area.

For the implementation of the decision-making engine, we
configure all actor and critic neural networks with two hidden
layers of 256 units. We update the networks weights using
Adam and learning rates of 10−4 and 10−3 for the actor and
critics, respectively. We use Ornstein-Uhlenbeck process with
the parameters θnoise=0.15 and σnoise=0.15 for the exploration
noise [38]. Finally, we use a reply buffer of 2, 000 samples and
a minibatch size of 32 samples.

Without loss of generality, we set a delay constraint
dmax=20 s, λper

1 =λsem
1 =10, f per

1,min=f
sem
1,min=1, and study differ-

ent combinations of λper
0 , λsem

0 , f per
0,min and f sem

0,min. To this end,
we simulate a satellite communication link according to 3GPP
guidelines [39], and evaluate SPIFF against three benchmarks:
(i) Traditional Communication (JPEG): Images are encoded
using the JPEG standard with a quality level set a priori

TABLE II
STATE-OF-THE-ART ML MODELS USED TO IMPLEMENT THE BUILDING

BLOCKS OF THE SPIFF FRAMEWORK

Block Implementation Parameters

Semantic
Segmentation

MobileViT + DeepLabV3
(small) [40]

∼6.4M parameters, pre-trained on
PASCAL VOC

Image
Captioning

BLIP with ViT-B/16
backbone [41]

∼213M parameters, pre-trained
on COCO, max. length=100

LDM Stable Diffusion 2 [42] ∼890M parameters, pre-trained
on LAION-5B, 50 denoising steps

to 45. This level was chosen to make sure this benchmark
always meets the established delay constraint. (ii) Standard
Semantic Communication (SC): The transmitter generates a
textual caption of the input image, which is then sent over
the channel. The receiver reconstructs the image based on this
caption, using an LDM. The captioning and LDM models are
the same as those used in the SPIFF pipeline (Table II). (iii)
Neural Contextual Bandit (NCB): This corresponds to SPIFF’s
framework but, instead of using our learning engine, it uses
the widely used Neural Contextual Bandit (NCB) approach
[36] (with an actor and a single critic).

Configuration Impact Analysis. Fig. 10 illustrates the
trade-offs between fidelity (PF and SF scores) and bandwidth
savings for various SPIFF configurations, benchmarked against
JPEG and standard SC. As expected, SC achieves extreme
compression (nearly 100% savings) but at the cost of very
poor perceptual fidelity and inconsistent semantic fidelity.
Conversely, JPEG provides reasonably good fidelity but is
inflexible, offering only a narrow range of bandwidth savings
(up to 80%). SPIFF, in contrast, demonstrates the ability
to flexibly navigate the entire fidelity-bandwidth spectrum.
The results highlight that preserving even a small fraction of
low-relevance patches (p(0)>0, denoted by green and purple
points) is crucial for maintaining high overall fidelity. Configu-
rations that discard all low-relevance patches (p(0)=0, orange
and red points) achieve much higher bandwidth savings,
approaching SC levels but with significantly better and more
controllable fidelity. Further, for a given patch preservation
fraction, adjusting the bounding box size (β) allows for fine-
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tuning this trade-off. For instance, when p(0)>0, increasing
β (purple vs. green points) can slightly improve bandwidth
savings by reducing the patch grid size while still preserving
the most critical content.

To highlight SPIFF’s core benefit of selective fidelity,
Fig. 11 isolates the performance for high- and low-relevance
regions separately. Unlike JPEG, which compresses the entire
image uniformly, SPIFF successfully maintains very high PF
and SF scores for the high-relevance ‘person’ rank across all
configurations. It selectively degrades instead the quality of the
low-relevance ‘other’ rank to maximize bandwidth savings.
This confirms that SPIFF can minimize data transmission
without compromising the integrity of task-critical image
components, a capability that both benchmarks lack.

Learning Engine Evaluation. We now evaluate the ability
of the SPIFF learning engine to converge to an optimal
configuration under different operational scenarios. Fig. 12
shows the engine’s behavior for two distinct image subsets:
one where the ‘person’ segment occupies a high (‘H’, i..e,
0.45±0.04) pixel fraction and one where it occupies a low (‘L’,
i.e., 0.22±0.01) pixel fraction. We test the engine under three
fidelity requirement levels, as defined in Table III. The results
show that the engine intelligently adapts its policy based
on both content and constraints. For ‘L’ images (Fig. 12a)
and lenient fidelity requirements, the engine quickly learns to
maximize bandwidth savings by setting a low patch preserva-
tion fraction (p(0)→0), which mitigates the impact of β. In
contrast, when faced with the same ‘L’ images but under strict
fidelity targets, the engine selects a high p(0). Conversely,
for ‘H’ images (Fig. 12b), β →0 only for lenient targets.
This strategy maintains the quality of the large, low-relevance
background, which is necessary to meet the strict fidelity
target, while perfectly preserving the small, high-relevance
region. In all cases, the hard delay constraint is satisfied.

Comparison. We finally compare the performance of SPIFF
against all the benchmarks as summarized in Table IV. The
comparison is conducted across the three scenarios defined
by the fidelity requirements in Table III: Strict, Intermediate,
and Lenient. We report the empirical probability of satisfying
the perceptual (f per

0 ) and semantic (f sem
0 ) fidelity constraints

for the low-relevance rank (as the high one is always fully

TABLE III
PERCEPTUAL FIDELITY (PF) AND SEMANTIC FIDELITY (SF) TARGETS

Target PF (fper
0,min) SF (f sem

0,min) λper
0 λsem

0

Strict 0.8 0.9 1.25 5
Intermediate 0.6 0.8 1.2 4.75
Lenient 0.4 0.6 0.1 0.5

TABLE IV
COMPARISON BETWEEN SPIFF AND OTHER BENCHMARKS

Target Scheme P(f per
0 ≥f per

0,min) P(f sem
0 ≥f sem

0,min) BW Savings (%)

Strict

SPIFF 0.96 1.00 74%
NCB 0.84 0.99 53%
JPEG 0.83 1.00 75%

SC 0.00 0.02 99%

Interm.

SPIFF 0.98 0.94 79%
NCB 0.40 0.37 83%
JPEG 1.00 1.00 75%

SC 0.00 0.38 99%

Lenient

SPIFF 1.00 1.00 85%
NCB 1.00 1.00 83%
JPEG 1.00 1.00 75%

SC 0.05 0.98 99%

preserved), alongside the average bandwidth savings. Under
Strict fidelity targets, SPIFF shows a superior balance of
performance. It meets the PF constraint in 96% of cases,
significantly outperforming the NCB and JPEG benchmarks
by 12% and 13%, respectively. SC fails to meet this target.
Notably, SPIFF achieves its high fidelity with 74% bandwidth
savings, comparable to JPEG’s 75% and 21% higher than
NCB’s. For the Intermediate case, SPIFF proves to be a
reliable approach, meeting both constraints with very high
probability. In contrast, NCB’s performance collapses, satis-
fying the PF and SF targets only 40% and 37% of the time,
respectively. While JPEG also meets the fidelity targets, SPIFF
provides slightly better bandwidth savings (79% vs. 75%). For
the Lenient targets, all methods except SC succeed. In this
case, SPIFF stands out by yielding the highest bandwidth
savings (85%), surpassing both NCB (83%) and JPEG (75%).

In summary, SPIFF consistently provides the best trade-off
across all scenarios. It effectively adapts its policy to either
guarantee high fidelity under strict constraints or to maximize
bandwidth savings under more relaxed conditions, proving its
effectiveness and versatility compared to the benchmarks.

VIII. CONCLUSIONS

We tackled the efficient transmission of visual data un-
der strict resources constraints, as it is the case in non-
terrestrial networks, and proposed SPIFF, a novel framework
that overcomes the lack of adaptability of current approaches
by introducing the concept of selective fidelity. SPIFF in-
corporates a lightweight semantic encoder that leverages a
novel patch preservation strategy, and a generative decoder.
For robustness in highly dynamic and unpredictable scenarios,
SPIFF also integrates a learning-based decision engine capable
of online configuration tuning, which trades off perceptual
fidelity, semantic fidelity, and bandwidth utilization at best,
while fulfilling delay constraints. Experimental results, ob-
tained using a complete SPIFF encoder-decoder implemen-
tation, show that SPIFF succeeds in meeting fidelity targets
where semantic communication fails, and improves over state-
of-the-art solutions bandwidth savings (by up to 21%) and
perceptual fidelity (by up to 13%).
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