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In mobile communication systems, the increasing densification of radio access networks is creating unprece-
dented computational stress for baseband processing, threatening the industry’s sustainability, and new
computing paradigms are urgently needed to improve the efficiency of wireless processors. Quantum comput-
ing promises to revolutionize many computing-intensive tasks across diverse fields and therefore may be the
key to realizing ultra-dense next-generation mobile systems that remain economically and environmentally
viable. This paper investigates the potential of Quantum computing to accelerate Forward Error Correction
(FEC), the most compute-heavy component of wireless processors. We first propose Qu4Fec, a novel solution
for decoding Low-Density Parity Check (LDPC) codes on Quantum Processing Units (QPUs), which we show
to outperform state-of-the-art approaches, by reducing the Block Error Rate (BLER) by nearly an order of
magnitude in simulation. We then implement Qu4Fec on a real-world QPU platform to study its practical
viability and performance. Our experiments reveal that current cutting-edge QPU architectures curb the
capabilities of FEC and expose the underlying factors, including long qubit chains, scaling, and quantization.
Based on these insights, we suggest original blueprints for future QPUs that can better support Quantum-based
wireless processors. Overall, this paper provides a reliable reality check for the feasibility of wireless processing
on Quantum annealers: as QPUs start to be considered part of a possible 6G landscape, our work may open
new research paths towards the design of FEC methods for Quantum-powered wireless processors.
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1 Introduction
Quantum computing is rapidly shifting from a laboratory-only technology to the market [21],
and experiments in production-ready environments are starting to showcase its potential as a
revolutionary technology across many domains. This includes sectors such as logistics and supply
chain optimization [47], finance [31], materials and chemistry [27], key distribution [39] and
communication networks [55]. Among the many applications above, Quantum processors may also
become a key enabler in the context of next-generation mobile wireless networks. With 6G systems
expected to establish a new era of ultra-fast data throughput and sub-millisecond round-trip latency,
the integration of advanced and intelligent processing units, such as Quantum processors, becomes
critical. These processors can address the challenges posed by the vast number of interconnected
devices and the need for rapid and efficient data processing in dense Radio Access Network (RAN)
environments. We followingly elaborate on the concept of Quantum computing for RAN.
Sustainable RAN densification. Radio Access Network (RAN) densification [9] is regarded

as a fundamental enabler, especially if combined with high-band access technologies [36] that
can provide the required wireless capacity when the site coverage is capillary enough. Despite
its promise, RAN densification poses many challenges, largely because of its increased power
needs [51], which can be though significantly mitigated by leveraging Quantum technologies [30].

Yet, densification alone may fall short of having a real practical impact due to its limited sustain-
ability. Deploying fully-fledged, distributed base stations with high density entails high economic
costs associated with the installation (including fiber connectivity to the backhaul) and operation
of the pervasive sites. Also, environmental costs risk exploding, making ultra-dense deployments
socially unacceptable. Major industrial fora are therefore promoting wireless processing pooling
approaches that can substantially mitigate such costs [45]. Indeed, a strategy of installing many
Remote Units (RUs), i.e., antennas, while centralizing all wireless baseband processing into shared
compute resources yields a potential to cut down energy costs for the operator by orders of mag-
nitude [51]. Prototypes [6] and initial deployments in operational infrastructures [44] are also
spearheading the adoption of paradigms for RAN processing pooling in production and at scale.

Gains are mostly due to pooling the physical signal processing blocks at the lower levels of the
wireless transmission pipeline [25], which are the most critical and compute-intensive functions and
directly impact network performance. Forward error correction (FEC) schemes like Low-Density
Parity Check (LDPC) codes that are part of the 3GPP 5G New Radio (NR) standards have high
data throughput and error correction close to the Shannon limit, yet require parallel processing
capabilities and specialized hardware accelerators based on ASICs and FPGAs that dramatically rise
power consumption costs if they are dedicated to individual RUs [41]. Sharing such accelerators
across sets of RUs allows for multiplexing decoding demands, maximizing the utilization of the
hardware, and taking advantage of the heterogeneity of available CPUs, ASICs, and FPGAs to seek
energy optimization.
Quantum for RAN acceleration. In the scenario above, the more powerful the cloud of

accelerators, the larger the number of RUs it can serve, and the higher the gain that baseband
resource pooling can achieve.Motivated by this consideration, the quest is open formore capable and
power-efficient accelerators, and an emergent technology with unique features, such as Quantum
computing, is a prime candidate for investigation. Indeed, Quantum’s very high performance in
solving NP-hard problems, such as those commonly encountered in wireless protocols, makes a
clear case for Quantum-based solutions for RAN baseband processing. Quantum Computing Units
(QPUs) with many qubits promise to meet the strict budgets and hard execution deadlines that
characterize, e.g., FEC decoding operations, even in massive Multiple Input Multiple Output (MIMO)
configurations and without leading to increased power consumption or operational costs [30].
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Fig. 1. BER/BLER curves of Qu4Fec and QBP [28] for a (2,3,420) LDPC code.

Seminal studies have already started exploring applications of Quantum computing to baseband
processing. Proposals like IoT-ResQ [34], X-ResQ [32], and QuAMax [33] tackle the problem of
MIMO detection using Quantum annealers, whereas HyPD [29] considers Quantum for polar code
decoding. As far as the decoding of actual LDPC codes is concerned, QBP [28] is, to date, the first and
only solution in the literature. While QBP matches the LDPC code design to the existing Quantum
architecture to favor the implementability of the solution, the derived code significantly underper-
forms existing codes from the literature, such as Gallager [20], yielding an overall lower wireless
performance. Additionally, QBP’s problem formulation, which also includes prior hyperparameter
tuning depending on Signal-to-Noise Ratio (SNR), lacks formal guarantees that the minimum energy
solution is the maximum likelihood solution of the fundamental decoding problem.

Further variants of QBP have focused on complementary aspects. In [18], the authors post-process
the Quantum computer results by discarding invalid codewords and identifying the one closest to
the received vector. The study in [22], evaluates different post-processing techniques, including
the minimum energy solution or the solution with the highest frequency. In constrast, the authors
in [40], consider the effects of Rayleigh channel, unlike the Additive White Gaussian Noise (AWGN)
channel, which was used in previous works. However, all works in [18, 22, 40] do not address the
fundamental limitations in QBP and share the same weaknesses highlighted above, that is, they
employ an underperforming problem formulation for FEC decoding and utilize the same code
design algorithm.

Our contributions. In this paper, we present Qu4Fec, an improved LDPC decoder powered by
Quantum computing, which outperforms the state-of-the-art QBP by almost one order of magnitude
in terms of Bit Error Rate (BER) and Block Error Rate (BLER). As a representative example, Fig. 1
shows how Qu4Fec can achieve 10%, which is set by 3GPP as the channel reliability threshold
for enhanced mobile broadband services [4], and 1% BLER with 1.82 db and 1.54 dB lower SNR
respectively and can attain a 7.6× BLER improvement at 4 dB, for a (2,3,420) LDPC code. The design
and evaluation of Qu4Fec set forth several original contributions, as follows.

• We demonstrate that tailoring the LDPC code parity check matrix to fit the layout of a specific
Quantum architecture as proposed by QBP undermines the code’s error-correcting capabilities.
Qu4Fec, instead, builds on top of commercial Quantum computers (like D-Wave’s), regardless
of their qubit layout structure, and considers well-studied LDPC codes, such as Gallager.

• We present a novel formulation of the LDPC decoding problem as a Quadratic Unconstrained
Binary Optimization (QUBO) task. We re-engineer the constituent terms and directly derive
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them from the fundamental maximum-likelihood decoding formulation to achieve better
accuracy and efficiency, removing the need for prior hyperparameter optimization.

• We perform experiments with a real-world cutting-edge Quantum Processing Unit (QPU) and
identify clear limitations of the current and upcoming Quantum architectures in supporting
LDPC decoding operations.

Ultimately, our work advances the body of knowledge about Quantum-powered FEC and points in
several directions for the future development of practical Quantum RAN accelerators.

A caveat on LDPC and Quantum. Before proceeding further, we define the scope of our work,
positioning it with respect to two completely different settings where coding and Quantum come
together in the current scientific literature.

On the one hand, retrieving Quantum information has been challenging due to its noisy nature
compared to classical bits. The noisiness of the Quantum platforms is ascribed to various factors:
𝑖) qubits are still not perfectly isolated from the environment and minimal interaction with the
platform causes decoherence, degrading the Quantum state; 𝑖𝑖) external disturbances can invert a
qubit from |0⟩ to |1⟩ and vice versa; 𝑖𝑖𝑖) additionally, in systems where qubits are entangled, an error
in one qubit will propagate to others due to their strong correlation, exacerbating that effect [56]. In
this context, significant efforts have been put into developing error correction codes that increase
reliability when interacting with qubits [11]. These investigations can be intended as exploring
FEC for Quantum and also use LDPC as an error-correction approach. Quantum LDPC codes are
essential for building fault-tolerant Quantum systems, needed to scale up Quantum computers
since they provide a high rate of error detection and correction. Our study does not belong to this
class of works.
On the other hand, Quantum technologies have been recently proposed as a processing tool

to solve FEC problems [28] already present in the telecommunication area. That is, the idea is to
leverage Quantum systems as an alternative to traditional computing solutions to tackle LDPC
decoding, which is ubiquitous in the latest WiFi [1] and 5G NR standards [3]. Thus, these works
solve LDPC with Quantum. Our study and all the contributions listed above fall in this category.

2 Background
In this section, we provide a brief background on LDPC codes in Sec. 2.1, where we describe the basic
principles of code design (Sec. 2.1.1), and the encoding process (Sec. 2.1.2), and the decoding process
(Sec. 2.1.3). In Sec. 2.2, we go deeper into the internals of Quantum annealing and its potential
energy and cost-saving benefits, when deployed in the RAN (Sec. 2.3), followed by defining LDPC
decoding as a binary optimization problem in Sec. 2.4.

2.1 LDPC Codes
An LDPC [20] code is a binary linear FEC code that is characterized by a sparse generator matrix
𝐺 ∈ {0, 1}𝑘×𝑛 and parity-check matrix 𝐻 ∈ {0, 1}𝑚×𝑛 , where 𝑘 , 𝑛 is the number of message and
codeword bits respectively, and𝑚 is the row count of 𝐻 . A codeword 𝑐 is valid if and only if it
satisfies𝐻 ·𝑐𝑇 = 0 in the binary domain, or equivalently, ℎ𝑖 ·𝑐𝑇 = 0, also known as check constraints,
where ℎ𝑖 with 𝑖=1, . . . ,𝑚 is the row vector 𝑖 of 𝐻 . A (𝑑𝑣, 𝑑𝑐 )-regular LDPC code involves exactly 𝑑𝑐
codeword bits in each constraint, while each codeword bit is present in 𝑑𝑣 constraints. We denote by
(𝑑𝑣, 𝑑𝑐 , 𝑛) the (𝑑𝑣, 𝑑𝑐 )-regular LDPC code of length 𝑛. An LDPC code can be visually represented by
the Tanner graph [52], a bipartite graph consisting of two sets of nodes: check nodes and variable
nodes. Check nodes are the rows of the parity-check matrix, i.e., match the constraints, while the
variable nodes represent columns, i.e., the codeword bits. In the top part of Fig. 2, we illustrate the
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Fig. 2. 𝑎) Tanner graph extraction from a parity check matrix. 𝑏) A BP update for 𝐿𝐿𝑅1. The cycle length is 6
since the update traverses 6 nodes before returning to 𝑣1 (𝑣1 → 𝑐1 → 𝑣5 → 𝑐4 → 𝑣4 → 𝑐2 → 𝑣1).

Tanner graph extraction from a parity check matrix, where 𝐻𝑖 𝑗 = 1 denotes the existence of a link
between check node 𝑖 and variable node 𝑗 .

2.1.1 Code Design. The error-correcting capability of a code is strongly correlated with the cycle
length distribution of the Tanner graph, as the bit corrections rely on the independent message
passing between the graph nodes [38, 58]. Shorter cycles break this independence earlier in the
decoding process, leading to decreased performance. Since an LDPC code always contains cycles in
practical scenarios with finite code size 𝑛, the challenge is designing the parity check matrix so
that the corresponding Tanner graph has cycle lengths as large as possible. Several efficient regular
LDPC code design methods are available, such as Gallager [20] and PEG [24]. We next discuss the
encoding and decoding process.

2.1.2 Encoding. The code design eventually yields a parity check matrix 𝐻 , with properties that
assure the code’s error correction capabilities. To convert the matrix 𝐻 into a generator matrix
𝐺 , we use the following steps. This procedure assumes that 𝐻 is a full-rank matrix, and if not,
Gaussian elimination method needs to first be performed.
(1) Convert 𝐻 into a systematic form: 𝐻 = [𝑃 |𝐼𝑚], where 𝑃 is an𝑚 × (𝑛 −𝑚) matrix and 𝐼𝑚

is the𝑚 ×𝑚 identity matrix.
(2) Construct the generator Matix: 𝐺 = [𝐼𝑘 |𝑃𝑇 ], where 𝑃𝑇 is the transpose of the matrix 𝑃 .
The given an original message 𝑎 of 𝑘 bits and the generator matrix 𝐺 , a codeword is given

as 𝑐 = 𝑎𝐺 . The codewords generated by 𝐺 satisfy the parity check conditions and it must hold
𝐻𝐺𝑇 = 0, confirming 𝐺 generates valid codewords for 𝐻 .

2.1.3 Decoding. The LDPC maximum likelihood (ML) decoder outputs the codeword 𝑥 ∈ C that
maximizes the a-posteriori probability 𝑃 (𝑥 |𝑦), where C is the valid codeword set and 𝑦 is the
received channel value vector. Expressing this mathematically, we have

𝑥 = argmax
𝑥∈C

𝑃 (𝑥 |𝑦). (1)

Since the cardinality of C grows exponentially with 𝑘 , exhaustive search is not viable for practical
applications. Instead, different efficient algorithms have been proposed to solve (1).
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Belief propagation (BP) [13] is a heuristic algorithm that attempts to solve the decoding problem
via iterative message passing between the check and variable nodes of the Tanner graph. The
messages improve the extrinsic information that is received in one variable node from the rest of
the variable nodes, which eventually strengthens the belief of a certain bit being 0 or 1. The input
of the algorithm is the log-likelihood ratio (LLR) vector: 𝐿𝐿𝑅𝑖 = 𝑙𝑜𝑔

𝑃𝑟 (𝑏𝑖=0 |𝑦)
𝑃𝑟 (𝑏𝑖=1 |𝑦) , where 𝑃𝑟 (𝑏𝑖 = 𝑘 |𝑦),

𝑘 ∈ {0, 1}, 𝑖 = 0..𝑛 − 1 is the probability for bit 𝑏𝑖 = 𝑘 given received vector 𝑦. The calculation of
𝐿𝐿𝑅𝑖 depends on the modulation scheme used and the noise variance of the channel. The algorithm
ends when 𝐻 · 𝑐𝑇 = 0 or a maximum number of iterations is reached.

We now describe the BP algorithm. Let the set of check nodes connected to bit node 𝑛 asM(𝑛)
and the set of bit nodes connected to check node𝑚 as N(𝑚). Also denote the message from check
node 𝑚 to variable node 𝑛 as 𝑍𝑚𝑛 and the variable 𝑛 to check node 𝑚 message as 𝐿𝑛𝑚 . The BP
decoding algorithm comprises the following steps [13]:

(1) Check to variable message update: For each𝑚:
𝐿𝑛𝑚 = 2𝑡𝑎𝑛ℎ−1 (∏𝑛′∈N(𝑚)\𝑛 (𝑡𝑎𝑛ℎ(

𝑍𝑚𝑛′
2 ))

(2) Variable to check message update: For each 𝑛:
𝑍𝑚𝑛 = 𝐿𝐿𝑅𝑛 +∑

𝑚′∈M(𝑛)\𝑚 (𝐿𝑛𝑚′ )
(3) Belief update For each 𝑛:

𝐿𝐿𝑅𝑛 := 𝐿𝐿𝑅𝑛 +∑
𝑚′∈M(𝑛) (𝐿𝑛𝑚′ )

(4) Hard decision: The candidate codeword 𝑐 = [𝑐0, 𝑐1, . . . , 𝑐𝑛−1] is derived, setting 𝑐𝑖 = 1 if
𝐿𝐿𝑅𝑖 ≤ 0 else 0. The decoding exits if 𝐻 · 𝑐𝑇 = 0 or a maximum number of iterations is
reached. If not, the algorithm proceeds to the next iteration in Step 1.

Different variations of BP have been studied in order to simplify the computationally expensive
Step 1,e.g., Min-sum BP [14], or to speed up the algorithm’s convergence, e.g., Layered BP [23].
In the bottom part of Fig. 2, we display the 𝐿𝐿𝑅1 update across one BP iteration. The message

originating from 𝑣1 traverses 6 nodes before concluding to 𝑣1 yielding a cycle length of 6. For BP to
function optimally, the messages need to be independent. However, in the presence of unavoidable
cycles in practical codes of finite length, this property is invalidated, and the performance of BP
deteriorates, as we explain in Sec. 3.1.

2.2 Quantum Annealers
Quantum annealing [43] is a Quantum computing approach designed to solve optimization problems
by finding the global minimum of a given function. It harnesses Quantum phenomena occurring in
specialized superconducting loops at extremely low temperatures near absolute zero, including
qubit superposition, tunneling, and entanglement. This process is carried out by Quantum annealing
machines, known as Quantum Annealers (QA), which share conceptual similarities with Simulated
Annealing (SA), a metaheuristic that can be coded and executed on a classical processor. The QA
system is configured such that its lowest energy state coincides with the solution to the problem
under consideration. Both techniques start with a high-energy state and seek lower-energy states
by cooling the system. During the high-temperature annealing phase, the system explores various
possible solutions to avoid getting stuck in local minima. As temperature decreases, the system
moves to lower energy states, lowering the probability of escaping them and ultimately seeking
the global optimum.

Quantum annealing, like simulated annealing, is suitable for solving objective functions formu-
lated as Quadratic Unconstrained Binary Optimization (QUBO) problems [49]. A QUBO model
aims to find the vector of binary variables that minimizes an objective function with polynomial
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factors up to quadratic terms. Formally

𝐸 (𝑥) =
∑︁
𝑖

ℎ𝑖𝑥𝑖 +
∑︁
𝑖< 𝑗

𝐽𝑖 𝑗𝑥𝑖𝑥 𝑗 , (2)

where 𝑥 = 𝑥𝑖 for 𝑖 = 1, 2, . . . , 𝑛 is the vector are binary decision variables, ℎ𝑖 is the linear term of 𝑥𝑖 ,
and 𝐽𝑖 𝑗 denotes the quadratic term between variables 𝑥𝑖 and 𝑥 𝑗 .

The basic unit of Quantum information is the qubit, analogous to the bit in classical computing.
Unlike bits, which can only represent a definitive state of 0 or 1, qubits can be in a superposition of
states, representing multiple values simultaneously due to the principles of Quantum mechanics.
This unique characteristic allows Quantum annealers to tackle complex optimization problems with
an approach that goes beyond classical methods. Qubits must be connected to create entanglement.
This is achieved through couplers, which are essentially superconducting loops. When QA is
programmed to solve a QUBO, the bias of a qubit 𝑞𝑖 is set to ℎ𝑖 , and the strength of the coupler
between 𝑞𝑖 and 𝑞 𝑗 is set to 𝐽𝑖 𝑗 .
In the context of QA, qubits are used to encode potential solutions to optimization problems.

In the annealing process, the qubits are initially placed in the superposition state, with an equal
probability of being either in 0 or 1 state. While the annealing process evolves, the Quantum
phenomena of tunneling and entanglement take place in this low-temperature environment, with
the system converging slowly to a minimum of the QUBO model, which can be either a local or a
global one. At the end of the anneal, each qubit has a classical state of 0 or 1 and is the solution to
the QUBO problem.

2.3 Quantum RAN Power Analysis
Performing wireless tasks such as FEC decoding in a Quantum computer has the potential to
substantially impact the overall energy consumption footprint of the mobile network when com-
pared with the traditional CMOS-based computing systems. Google’s Sycamore Quantum computer
reportedly has a power consumption of 15 kW [54], primarily attributed to its refrigeration and cool-
ing unit (10 kW) and classical electronics (5 kW). D-Wave’s Advantage system reports a maximum
power consumption of 25 kW, with cooling accounting for 15 kW [26].

Consequently, cooling is the primary source of the power consumption in Quantum systems [46],
yet it is not expected to scale with the number of contained qubits [46, 54]. In contrast, CMOS 5G
base stations consume between 35 and 250 kW [30], depending on factors such as MIMO degree,
number of receive antennas and transmission bandwidth. These figures are significantly higher
than those expected for Quantum systems, indicating the potential for substantial energy and OPEX
reductions of up to 1,500% that can be attained by deploying Quantum processors for RAN.

2.4 QUBO Formulation for the Decoding Problem
In order to use Quantum computing to solve the fundamental problem of LDPC decoding in noisy
communication systems, a challenge arises in that classical iterative solutions such as BP cannot be
executed on QA platforms. As anticipated in Sec. 1, QBP [28] is, to date, the only solution in the
literature to propose a QUBO formulation for LDPC codes that is suitable for subsequent solution
by the QA. In the formulation proposed by QBP, the variables used in the QUBO problem are split
into two types: 𝑖) the code variables [𝑞0, 𝑞1, . . . , 𝑞𝑛−1] that denote the output decision of the decoder,
and 𝑖𝑖) the ancillary variables that describe the modulo-2 constraints enforced by the LDPC as an
optimization objective.
The QUBO formulation for the LDPC decoding comprises two terms: 𝑖) the LDPC constraint

term that weights the possible solution, penalizing not valid (i.e., with no valid check constraints)
codewords, denoted by𝑄𝐿𝐷𝑃𝐶 , and 𝑖𝑖) a correlation function that associates the problem solution to
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the received channel values, denoted by 𝑄𝐶 . This latter term steers the QA solver toward solutions
that are more related to the initial set of received values after the demodulation.

The final QUBO formulation implemented by QBP is a weighted summation of the LDPC constraint
function and the correlation function

𝑄 = 𝑎 ·𝑄𝐿𝐷𝑃𝐶 +𝑄𝐶 (3)

where 𝑎 is a positive weight factor, which steers the balance between the two terms. QA can find
the solution that minimizes both terms, yielding to a correctly decoded codeword.

Considering an (𝑚,𝑛) parity check matrix, we have

𝑄𝐿𝐷𝑃𝐶 =

𝑚∑︁
𝑗=1

𝑄𝐿𝐷𝑃𝐶 𝑗

with𝑄𝐿𝐷𝑃𝐶 𝑗 =
∑𝑛−1

𝑖=0 (𝐻 𝑗𝑖 ·𝑞𝑖 − 2 · 𝐿 𝑗 )2 being the minimization function objective related to the 𝑗-th
constraint and 𝐿 𝑗 is a function of the ancillary qubits, which depends on the degree (number of 1’s)
of that constraint. The utility of 𝐿 𝑗 is to enforce that the modulo-2 (i.e., XOR in binary) summation
of the 𝑗-th constraint’s constituent variable nodes sums to 0 and is expressed by

𝐿 𝑗 =

𝑡∑︁
𝑠=1

(2𝑠−1 · 𝑞 𝑗,𝑠
𝑒 )

where 𝑡 is a function of the check node degree and 𝑞𝑒 𝑗,𝑠 is the 𝑠-th ancillary qubit of the 𝑗-th
constraint.
The second term of the QUBO is the correlation function. This term incorporates the channel

output values and aims to associate them with the problem solution. Let 𝑦 = [𝑦0, 𝑦1, · · · , 𝑦𝑛−1] be
the received channel vector. The authors in [28], set 𝑄𝐶 to minimize the distance

𝑄𝐶 =

𝑛−1∑︁
𝑖=0

(𝑞𝑖 − 𝑃𝑟 (𝑞𝑖 = 1|𝑦𝑖 ))2

Finally, in [28] 𝑎 is set based on the transmission SNR, performing a hyperparameter search.

3 Decoding in theQuantum Environment
We now introduce our original design for an LDPC code suitable for a QA, named Qu4Fec. De-
veloping such a code requires finding solutions for two aspects: 𝑖) a code design and 𝑖𝑖) a QUBO
formulation of the LDPC decoding problem. We discuss these steps using as a reference QBP [28],
which is the state-of-the-art Quantum-friendly LDPC decoder. In the following Sec. 3.1, we discuss
the code design part of the problem: we point out the detrimental effect that custom-designed
codes that are primarily aimed at fitting the Quantum hardware, such as those utilized by QBP,
have on the error correcting capabilities and, in contrast, we propose to use well-established code
design methods. In Sec. 3.2, we formulate an alternative QUBO expression that formally verifies
the fundamental LDPC decoding problem in Eq. 1, which ultimately yields stronger guarantees and
higher performance than that introduced by QBP in Sec. 2.4.

3.1 Code Design Strategies
FEC codes are carefully conceived to improve error-correcting capabilities in digital communications,
and the error rate performance is the main metric that needs to be optimized in the development of
an FEC code. Yet, in a QA, FEC code design needs to also consider the specificity of the execution
platform (i.e., the QPU) that will be used. In Fig. 3, we illustrate the natural order for this process:
from (a) designing the LDPC code to (b) the extraction of the QUBO formulation (which produces a
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a) Parity Check Matrix

c) QPU (target graph)

b) QUBO (source graph)

Fig. 3. Steps from designing an LDPC code for Quantum decoding. 𝑎) Design the parity check matrix. 𝑏)
Extract the QUBO formulation (source graph). 𝑐) Embed it to the QPU architecture (target graph). In red, we
show the occupied qubits; in blue, the edges of the source QUBO; and in green, the edges of the formatted
chains. Qu4Fec uses the Gallager method to generate regular codes (step 𝑎) and D-Wave’s MM to embed to
QPU (𝑏 → 𝑐).

so-called source graph) till (c) the embedding on the QPU target architecture (such as commercial
QPUs like Chimera, Pegasus or Zephyr manufactured by D-Wave1) used for decoding.

The flow from (a) to (c) is not straightforward since the target graphs of cutting-edge QA platforms
impose severe constraints that reflect on the QUBO and parity check matrix. The problem is so
binding that QBP devises an LDPC code specifically tailored to D-Wave’s Chimera QA framework
by reversing the logical process: the design starts from the constraints in (c) and goes backward to a
code design in (a). This turnaround has, however, the effect that the choices of QUBO formulations
and LDPC design are critically curbed.

We prove this point with a practical example. Using the QBP embedding method [28], we recon-
structed the parity check matrix of a (2,3,420) code. For comparison, we also constructed a code
with the same properties using the Gallager [20] method. For each of the codes, we generated
codewords, passed them through an AWGN channel, and decoded them using BP. We measured the
performance in terms of BER/BLER, which is a fair comparison since the two codes add the same
number of redundancy bits to the wireless channel transmission.
The comparison of both BER and BLER, depicted in Fig. 4, shows a noticeable gap between

the two strategies, with the Gallager code design outperforming that of QBP by almost an order
of magnitude. Although the manually designed code in QBP benefits the target QA by occupying
qubits as efficiently as possible, it basically disrupts the cycle length property discussed in Sec. 2.1.1
and results in inoperable performance.
The effect is revealed in the right plot of Fig. 4, where we measured the minimum cycle length

of each variable node in the Tanner graph and plotted the CDF for the two cases considered,
i.e., QBP and Gallager. The median cycle length of QBP is half that of Gallager. As shorter cycles
introduce higher correlations between the bits in the sequence to be decoded and limit the inherent

1https://www.dwavesys.com/
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Fig. 4. Comparison of QBP [28] and Gallager design method of (2,3,420) LDPC code. a) BER, b) BLER, c) Cycle
length distribution CDF.

capabilities of the code itself, the result clearly highlights how the manual design of QBP inherently
and substantially curbs the final decoding performance.
In light of these observations, we propose a novel design for FEC codes in Quantum settings

that are primarily aiming at preserving decoding capabilities. To this end, we abide by a traditional,
sensible pipeline that starts from efficient codes created with the Gallager method.

3.2 QUBO Formulation in Qu4Fec

As analyzed in Sec. 2.4, the QUBO formulation proposed by QBP [28] exhibits one main drawback:
the factor 𝑎 must be computed and optimized based on prior hyperparameter tuning. This makes
QBP SNR-dependent, relying on accurate SNR estimations, which are challenging to derive in
operational settings [5]. Even then, however, it is not formally guaranteed that the minimum
energy solution of the Quantum annealer coincides with the maximum likelihood solution of the
fundamental decoding problem. We thus propose Qu4Fec, a formulation that provides formal proof
without the need for prior hyperparameter optimization as it works by only taking the received
channel values as input.
The novel QUBO formulation of Qu4Fec derives directly from the ML objective detailed in (1)

and avoids the hyperparameter tuning step. We consider BPSK modulation 𝑦𝑖 = 1 − 2 · 𝑥𝑖 (where
𝑥𝑖 is the bit to transmit, 𝑦𝑖 is the transmitted symbol) over an AWGN memoryless channel. By
expanding (1) we have

𝑥 = argmax
𝑥∈C

𝑛−1∏
𝑘=0

𝑃 (𝑦𝑘 |𝑥𝑘 ).

𝑥 = argmax
𝑥∈C

𝑛−1∑︁
𝑘=0

ln 𝑓𝑌 |𝑋 (𝑦𝑘 |𝑥𝑘 ),

𝑥 = argmax
𝑥∈C

𝑛−1∑︁
𝑘=0

𝑦𝑘 (1 − 2𝑥𝑘 ). (4)

Based on this, we developed a novel QUBO formulation for the LDPC decoding problem 𝑃1. We use
the same structure as (3) and re-define

𝑃1 = 𝑎′ ·𝑄𝐿𝐷𝑃𝐶 + 𝑃𝐶 (5)
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Fig. 5. Sample comparison of QBP [28] and Qu4Fec energy levels. QBP formulation does not guarantee that the
QUBO’s minimum energy codeword (CW) coincides with the Maximum Likelihood (ML) codeword. Qu4Fec
formulation always reassures that its minimum energy codeword is the ML codeword.

by re-designing the correlation function as the minimization function of the negative ML function
of (4) as

𝑃𝐶 =

𝑛−1∑︁
𝑘=0

−𝑦𝑘 (1 − 2 · 𝑞𝑘 )

Similar derivations can be made for higher-order modulations. For QPSK modulation following
the 5G NR mapping [3], input bits 𝑥2𝑘 , 𝑥2𝑘+1 will be mapped to symbol 𝑠𝑘 = (1−2𝑥2𝑘 ) + 𝑗 (1−2𝑥2𝑘+1)
where 𝑘 = 0..𝑛2 − 1. The Eq. 4 will now become for QPSK:

𝑥 = argmax
𝑥∈C

𝑛
2 −1∑︁
𝑘=0

Re(𝑦𝑘 ) (1 − 2𝑥2𝑘 ) + Im(𝑦𝑘 ) (1 − 𝑥2𝑘+1)

where Re(·), Im(·) denote the real and imaginary part of the complex 𝑦𝑘 . For the rest of the
analysis and without loss of generality, we consider BPSK modulation.

Our design objective is to determine a sufficiently large 𝑎′ that prioritizes constraint fulfillment
(𝑄𝐿𝐷𝑃𝐶 ) over correlation function optimization (𝑃𝐶 ). A heavy weight on 𝑃𝐶 and hence basing the
decoding process largely on the channel values may be counterproductive in many conditions.

Thus, we follow a similar approach to [53] and consider the correlation function directed by the
ML decoder instead of the Euclidean distance. Consider a valid codeword solution vector 𝑞 and an
invalid solution 𝑞. It holds that 𝑃𝐶𝑚𝑎𝑥 =

∑𝑛−1
𝑘=0 |𝑦𝑘 |, 𝑃𝐶𝑚𝑖𝑛 =

∑𝑛−1
𝑘=0 −|𝑦𝑘 |, and that for any solution

vector 𝑞: 𝑃𝐶𝑚𝑖𝑛 ≤ 𝑃𝐶 (𝑞) ≤ 𝑃𝐶
𝑚𝑎𝑥 . Thus, we have

𝑎′ ·𝑄𝐿𝐷𝑃𝐶 (𝑞) + 𝑃𝐶
𝑚𝑖𝑛 ≤ 𝑃1 (𝑞) ≤ 𝑎′ ·𝑄𝐿𝐷𝑃𝐶 (𝑞) + 𝑃𝐶

𝑚𝑎𝑥

𝑎′ ·𝑄𝐿𝐷𝑃𝐶 (𝑞) + 𝑃𝐶
𝑚𝑖𝑛 ≤ 𝑃1 (𝑞) ≤ 𝑎′ ·𝑄𝐿𝐷𝑃𝐶 (𝑞) + 𝑃𝐶

𝑚𝑎𝑥 .

Since 𝑞 is a valid codeword: 𝑄𝐿𝐷𝑃𝐶 (𝑞) = 0 and 𝑞 is invalid: 𝑄𝐿𝐷𝑃𝐶 (𝑞) ≥ 1. We also want the
maximum energy of any valid codeword to be lower than the minimum of any invalid one. Thus,
we obtain

𝑃𝐶
𝑚𝑎𝑥 ≤ 𝑎′ + 𝑃𝐶

𝑚𝑖𝑛 ⇒ 𝑎′𝑚𝑖𝑛 = 𝑃𝐶
𝑚𝑎𝑥 − 𝑃𝐶

𝑚𝑖𝑛 =

𝑛−1∑︁
𝑘=0

2 · |𝑦𝑘 | (6)

These derivations yield that the ML solution 𝑞𝑀𝐿 , i.e., the valid codeword that minimizes 𝑃𝐶 , is
also the one that minimizes 𝑃1 since

𝑃1 (𝑞𝑀𝐿) = 𝑃𝐶 (𝑞𝑀𝐿) ≤ 𝑃𝐶 (𝑞) = 𝑃1 (𝑞).
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Unlike the𝑄 formulation used in QBP [28], our proposed 𝑃1 formulation ensures that the solution
that yields minimum energy is the ML codeword and removes the need for an offline optimization
of 𝑎. To showcase that with an example, we consider a (2, 3, 420) LDPC code and a channel of
SNR 2 dB. Given the transmitted maximum-likelihood (ML) codeword (CW), we generate the 256
solution space by freezing the ML CW’s first 412 bits and considering any binary combination of
the last 8 bits. For each of these generated possible solutions, we evaluate the energy level according
to the 𝑄 (QBP) and 𝑃1 (Qu4Fec) QUBO formulations and we compute the minimum energy solution.
In Fig. 5, we illustrate the energy level for the two formulations across the solution space. We notice
that QBP’s minimum energy CW may be distinct from the ML CW, which will lead to a higher
BLER, unlike Qu4Fec, whose formulation guarantees this property.

3.3 Improving Stability in Qu4Fec

We observe that any codeword error increases the output QUBO energy by at least 𝑎′, which
also depends on 𝑛. This creates a big energy gap between invalid and valid codewords, leading to
instability in the annealing process, where the probability of avoiding local optima depends on the
energy differential between the previous and the current state.

Consequently, the annealing process interprets any decrease in the energy as progress towards
the global solution, with a very low probability of escaping these suboptimal states due to the
energy decrease caused by 𝑎′. This issue inspired the derivation of a new formulation 𝑃2, which
restricts the energy differential between invalid, valid, and ML codewords.

The basic observation we made is that each row in the parity check matrix functions as a parity
check code itself (with just one row). We apply (5) for the 𝑗-th constraint

𝑃
𝑗

1 = 𝑎′𝑗 ·𝑄𝐿𝐷𝑃𝐶 𝑗 + 𝑃
𝑗

𝐶
,

with 𝑃
𝑗

𝐶
=
∑𝑛−1

𝑘=0 −𝐻 𝑗𝑘 · 𝑦𝑘 · (1 − 2 · 𝑞𝑘 ) being the correlation function considering only the variable
nodes of that constraint and 𝑎′𝑗 weighting individually each LDPC constraint 𝑄𝐿𝐷𝑃𝐶 𝑗 . Following
the same derivations as in (6), we derive that

𝑎′𝑚𝑖𝑛
𝑗 =

𝑛−1∑︁
𝑘=0

2 · 𝐻 𝑗𝑘 · |𝑦𝑘 |.

Since we want collectively to optimize for all constraints, the Qu4Fec QUBO formulation is

𝑃2 =

𝑚∑︁
𝑗=1

𝑃
𝑗

1 . (7)

𝑃2 achieves better numerical stability. For a single error in the achieved codeword at constraint
𝑗 , the energy differential is 𝑎′𝑗 , which considers the channel values only of that constraint. The
previous formulation, 𝑃1, used 𝑎′, which considered the whole 𝑛 values. From our experiments, 𝑃2
led to better stability and performance closer to BP, as we demonstrate later.

4 Simulated and Experimental Evaluations
We study the practical performance of Qu4Fec, using QBP as a reference where appropriate, in two
different settings, i.e., via simulated annealing and with a real-world Quantum computer, as follows.

• First, in Sec. 4.1, we reproduce the Quantum process via Simulated Annealing (SA) [8], a
stochastic optimization technique for approaching the global maximum of a QUBO. SA ini-
tializes a random solution to the problem, and in every step, picks a state close to the previous
one. The system starts at a high-temperature state, where the probability of accepting a worse
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solution (a solution that increases the global energy) is high, facilitating the exploration of
the energy landscape.
As the annealing process proceeds, the temperature cools down, this probability decreases,
and the process slowly approaches the global minimum. Commercial QA platforms, such
as the ones used in this paper, implement this algorithm using a physical system. Thus, we
consider SA the ideal annealer.
This perspective disregards any physical limitations and implementation imperfections of
the underlying analog computing platform, focusing solely on the interactions between the
qubits and couplers. Since the annealing process is inherently stochastic, both SA and QA
perform a certain number of anneals for each submitted QUBO. Each anneal generates a
solution, and the objective function is then evaluated for each solution to determine the
achieved energy.

• Then, in Sec. 4.2–4.5, we implement Qu4Fec into a real-world QPU. We use the D-Wave
Advantage [42] 6.1 platform on top of a hardware QPU with the Pegasus layout portrayed in
Fig. 3. We extensively test its performance with a range of LDPC workloads and Quantum
annealing parameters (e.g., annealing time, number of samples per anneal, chain strength [35],
among others). The results show, in fact, a significant discrepancy compared to the promising
performance presented in Sec. 4.1 under SA. In particular, BER and BLER surged to almost
100% for code lengths greater than 60 bits, regardless of the SNR level.
Motivated by these QPU results, we investigate the root causes of the decoding performance
drop, exploring the effect of the embedding algorithm and that of scaling and quantization.
The analysis lets us explain some crucial steps that need to be taken before Quantum annealing
takes place, the restrictions they impose, and their effect on decoding quality.

4.1 Benchmarking Qu4Fec via Simulated Annealing
Based on 𝑃2 and 𝑄 formulations we demonstrate the superiority of our solution Qu4Fec over QBP.
Using the Gallager method, we generate different LDPC codes and compare the BER/BLER curves
on SA. Additionally, we evaluate the BP performance (which we consider the ground truth for
traditional computing decoders) to quantify its discrepancy from Qu4Fec. For BP, we limit it to a
maximum of 10 iterations, as further iterations provide only negligible improvements in BLER. For
SA, we set the number of samples per submitted QUBO to 100 and select the one with minimum
energy, as an ideal annealing-based decoder would do.
For BP, Qu4Fec, and QBP, we compute BER and BLER directly from the input and output code-

words2. For each SNR level, we generate 10,000 message blocks, encode, modulate, and pass them
through an AWGN channel. We generate 3 different (2, 3, 𝑛) LDPC codes where 𝑛 ∈ {105, 210, 420}.
Authors in [28] used 420 bits as the fixed codeword size, so we used a fraction as the baseline size
in our benchmarks.
As illustrated in Fig. 6, the BLER discrepancy between BP and Qu4Fec is negligible across all

code lengths. This demonstrates that our revised Qu4Fec QUBO formulation achieves comparable
performance to BP3. However, as previously discussed in Sec. 2.3, this similar BLER performance
can be achieved with lower energy consumption compared to BP, which operates on conventional

2Note that this contrasts with the approach in [28], which uses an a posteriori model based on the samples’ distribution
gathered from several executions on the same instance to estimate these metrics and has a harder applicability to a real-world
decoder.
3We also evaluated the performance of commercial solvers, such as CPLEX with varying parameter settings, in solving the
QUBO. However, their performance was substantially inferior to that of SA. For instance, at 6 dB, CPLEX resulted in a 10%
higher BLER. This is attributed to CPLEX’s limitations in solving non-convex problems with a large number of variables
such as our QUBO.
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Fig. 6. BER/BLER curves for BP, Qu4Fec, QBP and different code lengths.

silicon. This makes Qu4Fec a promising alternative for carrier-grade baseband processing in the
Quantum setting, enabling resource pooling as proposed in [25].

We also observe that QBP performance diverges, especially in high SNR scenarios. This divergence
arises from the fundamental approach of Qu4Fec QUBO formulation, where each invalid codeword
yields higher energy than any valid one. QBP frequently fails in this regard, favoring invalid solutions
that minimize the correlation function without giving the appropriate weight to the LDPC constraint
satisfier component.

4.2 Embedding QUBO Problems in QPUs
Whenmoving from a simulated annealing environment to a real-world Quantum processor, after the
QUBO is formulated, it must be correctly programmed on the QPU before initiating the annealing
process. To achieve this, each logical variable is mapped to a qubit, while the interactions between
variables are mapped to couplers, the circuits that interconnect the qubits. The QUBO linear and
quadratic terms set the qubit biases and coupler strengths, respectively. This process is called
embedding.
In an ideal, fully connected QPU, each logical variable could be mapped to any qubit. QPUs

are continually improving in terms of qubit connectivity; for instance, the qubit out-degree grew
from 6 in Chimera to 15 in Pegasus and 20 in Zephyr [10]. Yet, the resulting QPU graphs are still
sparsely connected due to the inherently technical complexity of providing complex qubit fabrics.
Consequently, having only one-to-one mapping between a variable in the QUBO formulation
variables and a qubit is impossible, and chains must be created.

Chains are sets of qubits that represent a single logical variable, ensuring the proper representa-
tion of the interactions in the initial QUBO. That is, neighboring variables in the QUBO formulation
must also be so in the QPUs, either directly or through a chain. When the QA process terminates,
the state of the logical variable is determined by the majority vote of its chain’s qubits’ classical
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states. Intuitively, longer chains introduce larger sources of error in the annealing process, as more
qubits and couplers (along with their inherent noise) must be used to solve the problem. In Fig. 3,
we illustrate the embedding for the three different D-Wave target QPU architectures; in green, we
denote the couplers used for formatting chains, and in blue, the couplers as imposed by the original
QUBO quadratic interactions.
The process of formatting chains to map a source graph 𝑆 (i.e., a QUBO graph in our case) to

a target graph 𝑇 (i.e., the QPU graph) can be formulated as a minor extraction problem. In graph
theory, 𝑆 is a minor of𝑇 if 𝑆 can be obtained by deleting edges and vertices or by contracting edges
in 𝑇 . Minor extraction is, in general, an NP-hard problem [37]. MinorMiner (MM) [12, 15, 16] is an
iterative heuristic algorithm that solves the dual problem; determining which set of vertices (chain)
in 𝑇 corresponds to each vertex in 𝑆 by taking into account the chain length of each source vertex.
Once this mapping is obtained, the QUBO can be executed on the QPU, as the qubits and couplers
can be programmed appropriately. In Fig. 3, we illustrate the embedding process with the green
lines representing the chain links.

4.3 Effects of Non-ideal Embeddings
The embedding process is a crucial step of Quantum annealing on real platforms since it affects the
total number of qubits participating in the process. It has been shown that a few dominant chains
produced by MM hold significantly more qubits than the average chain in practical cases [7]. In the
Noisy Intermediate-scale Quantum (NISQ) era, each qubit is inherently noisy, so when more than
one qubits are coupled together into a chain, the problem is exacerbated.

These imperfections in Quantum annealers arise from their analog nature, requiring operation at
temperatures near absolute zero to enable Quantum phenomena like tunneling and entanglement.
Controlling complex phenomena in extreme conditions is challenging and can lead to deviations
from the intended representation of a given problem. These deviations are collectively referred to
as Integrated Control Errors (ICE).
To better illustrate the issue, let us consider a problem with 𝑁 binary variables, where ℎ𝑖 and

𝐽𝑖, 𝑗 represent the linear and quadratic terms respectively, with 𝑖, 𝑗 = 1, . . . , 𝑁 and 𝑖 < 𝑗 . ICE can be
modeled as errors 𝛿ℎ𝑖 and 𝛿 𝐽𝑖, 𝑗 that affect the precision of these coefficients, thereby altering the
original problem definition. Consequently, these errors can modify the objective function the QPU
is attempting to optimize.

To counter this behavior, the authors in [28] resorted to a manual embedding solution supported
by the relatively easy (hence non-ideal) structure of the LDPC code they designed for QBP. The
LDPC parity check matrix perfectly embeds on the D-Wave 2000Q QA, shipped with the Chimera
architecture. This method allows QBP to fit larger codewords with fewer qubits due to the limited
chain length.
As discussed in Sec. 3.1, this comes with a high price in terms of maximum cycle lengths and

overall decoding performance. However, manual embedding faces more problems. The first is
the generality of the solution: each generation of QA has a short lifetime, with frequent changes
in the underlying architecture that are not backward-compatible and render previous manual
embeddings inapplicable and their associated LDPC code design obsolete. Indeed, newer QPU
platforms are not necessarily superset of previous platforms: for example, D-Wave 2000Q is based
on the Chimera 𝐶16 lattice, while D-Wave Advantage’s Pegasus architecture is a super graph of
Chimera 𝐶15. We attempted to fit the (2,3,420) code of [28] onto the newest architecture using the
QBPmanual embedding, but the attempt was unsuccessful due to the bigger chain lengths that were
created. Finally, embedding optimization for a specific code compromises generality, limiting its
applicability to codes with different parameters.
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Fig. 7. CDF of qubits’ chain length using different embedding methods.

Qu4Fec offloads the embedding task to the standardized and well-evolved MM, effectively decou-
pling the code design phase from the graph embedding. This yields many advantages, including
versatility in accommodating diverse (and efficient, e.g., Gallager) parity check matrices and invari-
ance to the target graph’s structural properties.
In our Qu4Fec implementation, we used D-Wave’s open-source MM [17]. We also investigated

variants of this algorithm, such as LAMM [48], SPMM, and CLMM [57], which aim to optimize the
mapping process by exploiting the structural characteristics of the source graph. Fig. 7 shows that
the different embedding methodologies do not consistently improve the chain length distribution
for a reference (2,3,420) code mapped onto the Pegasus layout. The reason is that the QUBO source
graph of an LDPC decoding problem does not present a specific layout that those variants could
leverage to render the embedding more efficient. In the rest of the paper, we thus consider MM to
be the embedding method.

4.4 Scaling andQuantization
The qubits and couplers in a QPU operate within specific ranges. For instance, the qubit bias range
for the latest Advantage QPU is between -4 and 4, and the coupler strength ranges from -1 to 1.
Since the coefficients of an objective function can theoretically span from negative to positive
infinity, they must be scaled down to fit within these hardware constraints. Before programming the
QPU, the coefficients are adjusted with a scaling factor to ensure they do not exceed the platform’s
acceptable range, leading to higher inaccuracies when coefficients have a larger span.

Following the programming of biases and couplers, a quantization process with finite resolution
is applied. This process inherently introduces error, as closely valued terms might be quantized
to the same value, potentially leading to significant distortions in the solution quality. In some
instances, these distortions can dramatically impact the energy landscape of the objective function,
with even a slight change in value or sign altering the optimal solution.

While quantization errors occur independently of scaling, experiments indicate that scaling before
quantization amplifies these errors. This suggests that when terms are first scaled, the subsequent
quantization can lead to greater inconsistencies, further complicating the problem-solving process
on a Quantum annealer.

To demonstrate this effect, we introduce an unweighted version of the Qu4FecQUBO formulation
(Qu4Fec-unweighted) where 𝑎′𝑗 = 1. Setting 𝑎′𝑗 = 1 effectively reduces the heterogeneity and range
of the coefficients, simplifying the problems linked to scaling and quantization since they will now
face similar modifications. However, this worsens the decoding performance as it does not optimize
as per 𝑃2.
In Fig. 8, we show the histograms of the linear and quadratic coefficients for both QUBO

formulations when injected into the Quantum platform within the above-mentioned range −4 . . . 4
and −1 . . . 1 for linear and quadratic terms respectively. The variability of the unscaled linear and
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Fig. 8. Original, scaled linear, and quadratic term histogram for the Qu4Fec and Qu4Fec-unweighted QUBO
formulations.
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Fig. 9. Percentage change of linear and quadratic terms due to scaling and quantization effect for Qu4Fec
and Qu4Fec-unweighted formulations. Considered 3 different bit widths of 4, 8, and 16 bit.

quadratic terms of the Qu4Fec formulation is disrupted when a scaling factor is applied, hence
changing the factors of the problem.
While we could compute the effect of the scaling process, we do not have access to the actual

QPU hardware implementation to understand how the real-valued variables are quantized into the
couplers. Thus, we consider three different bit resolutions (4, 8, and 16 bits) and show in Fig. 9 the
cumulative distribution function (CDF) of the percentage change of both the linear and quadratic
terms after quantization has taken place.
The quadratic terms (which exist only in the LDPC satisfier term) of the unweighted version

incurs a median error of 8% for 4-bit resolution and near negligible error for higher resolutions, as
these terms are not multiplied by the real numbers 𝑎′𝑗 . However, we notice a much larger discrepancy
in the linear terms. For the lowest resolution, some terms may even suffer a 100% error, and only at
very high resolutions is the accuracy high enough to avoid errors, indicating the high sensitivity of
the linear terms to the scaling and quantization effect.
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Fig. 10. Left plot: Percentage energy discrepancy between QA and SA for Qu4Fec and Qu4Fec-unweighted
QUBO formulations. Right plot: Maximum chain length and number of occupied qubits achieved by MM for
various code lengths.

4.5 Effects on the QA process
The errors introduced by embedding, scaling, and quantization affect the overall quality of the
annealing process when executed on a physical platform. To quantify this effect, we compare Qu4Fec
with its unweighted version on SA and QA and compute the discrepancy between the two processes
in the left plot of Fig. 10. We compute the relative energy discrepancy as the energy difference
between the solutions found by QA and SA divided by the ones found by SA. We can observe that
an overall easier problem such as Qu4Fec-unweighted always has a very low discrepancy between
the lowest energy solutions, indicating how the inaccuracies introduced by quantization on the QA
platform have a minor impact. As we consider SA an ideal annealer, higher discrepancies such as
the ones shown for larger codeword sizes are likely due to the combined effect of quantization,
scaling, and embedding.

Especially the latter has a noticeable effect, which we capture in the right plot of Fig. 10, where
we measure the maximum chain lengths and number of occupied qubits experienced by the QPU
for various codelengths. When the chain lengths are limited, even the more complex Qu4Fec still
attains comparable results to SA when executed with QA.

Throughout our analysis, we found that current QA platforms still have room for improvement
before they can give reliable results when employed as wireless processors due to the two error
sources analyzed before: 𝑖) the embedding process, which affects the total number of qubits that
will be involved in the annealing procedure, and 𝑖𝑖) the resolution of the coefficients of the QUBO
when they are programmed on the actual QPU.

5 TowardsQuantum-based Baseband Processors
By executing Qu4Fec on a commercial platform, we discussed how state-of-the-art QPUs are still far
from being used as baseband processors, mostly due to the difficulties in the embedding process. In
this section, we explore qubit fabric structures to accommodate LDPC codes discussing promising
design trends for a Quantum wireless processor design.

5.1 Embedding Algorithms Analysis
Embedding algorithms such as MM take the LDPC source graph (i.e., the one resulting from the
code design) as input and map it onto the target one, resulting from the hardware design of the QPU.
While in our experimental evaluation we used the Pegasus architecture, we now analyze the impact
of the Chimera (past) and Zephyr (future) D-Wave architectures on the embedding process by
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Fig. 11. Maximum chain length achieved by MM for different code word lengths and target QPU architecture.

measuring the resulting maximum chain length in Fig. 11. Subsequent QPU generations do improve
the embedding process in our results. However, only very short codeword source graphs can be
embedded with a maximum chain length that is sufficiently short to avoid energy discrepancy
with Qu4Fec. According to the left plot of Fig. 10, the maximum chain length should not exceed a
value 3, outlining the gray region in Fig. 11, and codewords must be shorter than 40 bits to allow so
even with the most recent Zephyr QPU architecture. More realistic [2] codeword lengths start to
suffer a linear increase, with the newest generation only marginally (17% on average) improving
the embedding process.

5.2 Optimal QPU Graph Structure
A tailored QPU architecture for LDPC decoding guarantees that no chains are employed at all
during the embedding. This requires understanding the characteristics of the source graph. To
embed any LDPC code with a source graph of 𝑛 total nodes and 𝑙 ancillary nodes, a full mesh of
𝑛 + 𝑙 nodes is required. Even a full mesh of just 𝑛 nodes is already impractical. For instance, to
perfectly embed any (2,3)-regular codeword of up to length 𝑛 as the ones we study in this paper,
the target graph should have 𝑖) 𝑙 = 2𝑛

3 for ancillary variables, which are completely unconnected
between them, and 𝑖𝑖) 𝑛 nodes for the code variables, forming a full mesh to accommodate any
possible parity check matrix structure. These two sets of nodes are interconnected as a complete
semi-bipartite graph with 𝑛 (7𝑛−3)

6 edges. However, our empirical findings show that typically less
than 1% of these edges are employed, indicating an extremely inefficient utilization.

5.3 Zephyr Layout Parameterization
QPU architectures are designed to facilitate QUBO problem embeddings while being practical and
extensible. For instance, D-Wave’s next-generation Zephyr QPU follows this principle by creating
a qubit fabric characterized by a concatenation of tiles so that QPU target graphs can be effectively
represented by two parameters: the tile replication factor𝑚 and the internal tile pattern 𝑡 . In a
nutshell,𝑚 controls the size of the QPU, while 𝑡 matches the available edges in a single tile. As
a reference, in the former-generation Chimera architecture, the unit cell consisted of a bipartite
graph of two shores of nodes, each of size 𝑡 = 4. Pegasus and Zephyr retained this parameter but
added sparse connections between nodes on the same shore, known as odd couplers.
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Fig. 12. Left: Effect of𝑚 on the maximum chain length, with a fixed 𝑡 = 4. Right: Effect of 𝑡 on the maximum
chain length with a fixed𝑚 = 8.

To understand the capabilities of the Zephyr architecture, we computed the maximum chain
length distribution achieved by MM under different values of𝑚 and 𝑡 . The current Zephyr topology
implementation from D-Wave offers 𝑡 = 4, so extending this parameter allows us to infer perfor-
mance for soon-available QPUs. We start by fixing 𝑡 and varying𝑚 in the left plot of Fig. 12. The
result shows that if𝑚 is large enough, then the advantages brought by extending the size of the
architecture are null, hinting at the internal structure of the tile as the most important parameter.
We corroborate this in the right plot of Fig. 12, which shows how increasing 𝑡 effectively reduces
the maximum chain lengths as more edges between nodes are available. Still, the gap between
current implementations and those that should offer dependable performance (i.e., 𝑡 ≥ 20) is large.

5.4 QPU Fabric Extensions
As not even the evolution of current commercial QPU platforms can reliably embed LDPC QUBO
problems, we next investigate how they should be extended towards this goal. As we showed above,
the key factor in decreasing the maximum chain length is the QPU’s internal connectivity factor.
Increasing connectivity within a tile (as shown in Fig. 12) offers a sublinear improvement on the
maximum chain length (i.e., from 12 to 4.3 by making the graph 5 times more complex), hence we
propose to add couplers between tiles.

In the commercial Zephyr, qubits in a tile connect to the corresponding qubits in the neighboring
tiles using external couplers. We extend this design with a Zephyr-𝑘 topology, meaning that each
qubit in a tile connects to all the neighboring tiles up to 𝑘 , as depicted in the top plot of Fig. 13.

We then show the results of the embedding process for several codeword sizes and (𝑚, 𝑡) = (8, 4)
in the bottom plot of Fig. 13. Increasing the inter-tile connectivity impacts the maximum chain
length and offers an easier target graph for embedding the Qu4Fec QUBO problem. A Zephyr-2
architecture would introduce 8% more edges than the original Zephyr, while the Zephyr-8, which
may be effective for LDPC decoding, results in a constant 28% increase in the number of edges.

6 Discussion
The transition from 4G/LTE to 5G/NR saw Turbo codes replaced by LDPC codes, largely due to
the high degree of data parallelism offered by parity-check matrices, which aligns well with the
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Fig. 13. Top: Qubit in tile 𝑖 connects to qubit in tile 𝑖 + 1 via first-order coupler (original Zephyr) and to qubit
in tile 𝑖 + 2 via second-order coupler (our proposal). Bottom: Effect of introducing higher order couplers on
the maximum chain length.

computational capabilities of modern CPU, GPU, and FPGA/ASIC architectures [50]. Protograph-
based LDPC codes [19], which are already standardized in 5G/NR, in conjunction with Layered
BP (introduced in Sec. 2.1.3), are well-suited to the Simple Instruction Multiple Data (SIMD)
programming paradigms supported by the aforementioned platforms. This combination significantly
enhances algorithm performance, resulting in higher throughput.
QPUs, however, exhibit heterogeneous computational characteristics that are fundamentally

different and often orthogonal to those of conventional computing platforms. In this context, an
alternative research direction is being shaped at the intersection of FEC and Quantum computing.
To fully harness the potential of QPUs, a novel family of LDPC codes could be designed specifically
to exploit the unique optimization capabilities of Quantum annealers, such as their ability to
find global minima efficiently in high-dimensional spaces, given a certain qubit fabric layout. For
example, jointly co-designing the qubit structure and LDPC code can help minimize the maximum
chain length, which is hinted as a significant factor in the low performance in the previous sections.
It is important to note that this approach contrasts with QBP, which derived an LDPC code based
on the qubit fabric rather than co-designing it jointly.

Alternatively, entirely new coding schemes tailored to the specialized characteristics of Quantum
platforms could be developed. For instance, Quantum-specific features like superposition and
entanglement might inspire coding schemes that exceed the limitations of classical algorithms.
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These innovations could address challenges such as noise resilience, qubit decoherence, and error
propagation in Quantum systems, ensuring more reliable performance in future mobile networks.

7 Conclusion
In this paper, we presented Qu4Fec, a solution for providing LDPC decoding on QPUs. We discussed
our guidelines for designing an LDPC decoder on Quantum annealing platforms, formulating it as
a QUBO problem. Our decoder outperforms the BLER obtained by the state-of-the-art approaches
by almost an order of magnitude and offers carrier-grade performance in simulation. However,
when we implemented Qu4Fec in a real QPU, performance dropped, hinting at severe constraints
brought in by the hardware platform.
We investigated the causes of such behavior, discovering how scaling, quantization, and em-

bedding the problem on real hardware make dependable wireless decoding currently unfeasible
in commercial QPUs. We finally analyzed how extending current platforms would improve per-
formance and identified key internal connectivity characteristics a QPU for wireless baseband
processing should have. Our work states the current significant limitations of commercial Quantum
computing platforms when employed in a Radio Access Network scenario. Despite the Qu4Fec
improved performance, there are still complex gaps to be filled, both in terms of algorithmic and
coding design and the underlying Quantum platform, opening interesting avenues for improvement.

In conclusion, this paper provides a reliable reality check for the feasibility of wireless processing
on Quantum annealers: as QPUs are expected to be part of the 6G landscape, this work may open
new research paths toward the definition of Quantum-friendly Forward Error Correction Codes for
wireless processors.
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