TelecomRAG: Taming Telecom Standards with Retrieval
Augmented Generation and LLMs

Girma M. Yilma
NEC Laboratories Europe, Germany
girma.yilma@neclab.eu

Andres Garcia-Saavedra
NEC Laboratories Europe, Germany
andres.garcia.saavedra@neclab.eu

Jose A. Ayala-Romero
NEC Laboratories Europe, Germany
jose.ayala@neclab.eu

Xavier Costa-Perez
i2CAT, NEC Laboratories Europe, and ICREA, Spain
xavier.costa@neclab.eu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT

Large Language Models (LLMs) have immense potential to trans-
form the telecommunications industry. They could help profession-
als understand complex standards, generate code, and accelerate
development. However, traditional LLMs struggle with the preci-
sion and source verification essential for telecom work. To address
this, specialized LLM-based solutions tailored to telecommunication
standards are needed. This Editorial Note showcases how Retrieval-
Augmented Generation (RAG) can offer a way to create precise,
factual answers. In particular, we show how to build a Telecommu-
nication Standards Assistant that provides accurate, detailed, and
verifiable responses. We show a usage example of this framework
using 3GPP Release 16 and Release 18 specification documents. We
believe that the application of RAG can bring significant value to
the telecommunications field.

CCS CONCEPTS

« Information systems — Language models; - Networks —
Network design principles;

KEYWORDS
Telecommunications, LLM, Standards, 3GPP, O-RAN, ETSI

1 INTRODUCTION

Large Language Models (LLMs), built upon the popular Transformer
architecture and massive training datasets, are revolutionizing the
way we interact with language. Their ability to “understand” com-
plex text, generate responses, and translate between languages
has far-reaching implications across industries. Among these, the
telecommunications domain stands to benefit significantly from
the advancements in LLMs.

Telecommunications professionals are tasked with navigating
the intricate and evolving landscape of standard specification docu-
ments established by bodies such as 3GPP, ETSL, and O-RAN. These
standards define the fundamental technologies that enable global
connectivity and interoperability. Al-powered assistants based on
LLMs have the potential to revolutionize how professionals interact
with these standards. Such assistants could rapidly analyze dense
specifications, generate code snippets, assist in debugging, and

ACM SIGCOMM Computer Communication Review

even offer insights that bridge the gap between different standards.
This holds the promise of increased efficiency, innovation, and the
streamlined development of robust telecom solutions.

However, conventional LLM-based assistants often struggle with
knowledge-intensive tasks, a point discussed in detail in Section 2
of this paper. While LLMs can store factual information implicitly
within their vast parameter sets, this knowledge is not easily acces-
sible, updated, or traceable. In the context of telecommunications,
where precision and reliance on standard-specified sources are crit-
ical, this limitation creates hurdles for widespread adoption in the
industry.

To overcome these challenges, there is a growing need for spe-
cialized LLM-based solutions tailored to telecommunication stan-
dards. Section 2 explores various domains where LLMs have shown
success, highlighting the need for such adaptation within telecom-
munications. Retrieval-Augmented Generation (RAG), a technique
that combines LLM capabilities with a non-parametric knowledge
base, offers a promising avenue for addressing the need for precise
and factual answers. Accordingly, we discuss in Section 3 the chal-
lenges of applying this approach specifically to telecommunication
standards, followed by the design of an architecture that tackles
these challenges to build a Telecommunication Standards Assistant
that is accurate, technically deep, and provides verifiable answers.

In Section 4, we present an implementation of this framework.
It leverages APIs and libraries to ingest telecom standards docu-
ments, create knowledge embeddings, and seamlessly integrate
them within a user-friendly interface. Finally, we show an opera-
tional example of the framework. We corroborate that the output
of the system is technically precise and verifiable when comparing
with ground truth extracted directly from the standard documents.

2 LLMS AND LANGUAGE GENERATION

This section provides some background on LLMs, their abilities
(Sec. 2.1), and LLMs for specific application domains (Sec. 2.2). Then,
we review the related work retrieval-augmented methods (Sec. 2.3),
which are the base of the proposed framework.

Volume 48 Issue 1, July 2024

2.1 Background on LLMs

Large language models (LLMs) are Transformer-based language
models with hundreds of billions or more parameters trained on an
enormous corpus of text. Some examples include Gemini, LLaMa,
and GPT-4. These models demonstrate significant capabilities in
comprehending natural language and tackling intricate tasks through
text generation. Although existing LLMs adopt the same Trans-
former architecture and pre-training objectives as other smaller
language models, the significant increase in the model size, data
size, and computing capacity largely improves the performance of
LLMs. In fact, some works propose different scaling laws of LLMs,
showing that model performance has strong dependencies with
these tree dimensions [6].

One of the most prominent features of LLMs is the emergent
abilities, formally defined as the abilities that are not present in
smaller models but arise in larger ones. The authors in [14] show
several examples of emergent abilities, where the performance in
a task via few-shot prompting is random until a particular scale.
When the model size surpasses a certain scale the performance
increases well above random. This ability, also referred to as in-
context learning, is formally introduced by GPT-3 [2] but is not
shown by previous models such as GPT-1 and GPT-2. Another
ability that emerged in large models is the step-by-step reasoning
also called chain of thoughts [13]. This strategy is very effective
in solving complex tasks that involve multiple steps such as math
problems.

As emergent abilities cannot be predicted through the scaling
laws of LLMs, this raises the question of whether additional scal-
ing could potentially further expand the range of capabilities of
language models [14].

2.2 LLM:s for specific application domains

LLMs have been applied to different specific domain areas. In health-
care, Med-PaLM [10] achieves expert-level performance on the
United States Medical Licensing Examination (USMLE). It relies
on the pre-trained PaLM model enhanced with several techniques,
namely, few-shot prompting, chain-of-thought and self-consistency
prompting, and prompt tuning. However, the use of LLMs in health-
care comes with the risk of fabricating medical misinformation (e.g.,
suggesting advice inconsistent with medical guidelines) [5].

Finance is another important field where the application of LLMs
is promising. In this field, BloombergGPT [15] is a proprietary
model based on BLOOM architecture trained with a mix of general
purpose and specialized finance data. This results in a model that
achieves SoTA results in financial benchmarks, while keeping com-
petitive performance on general-purpose tasks. As an alternative,
FinGPT is an open-source framework comprising several layers
for data gathering and engineering, pre-trained LLM models (e.g.,
LLaMA), and different fine-tuning techniques such as Fine-tuning
via Low-rank Adaptation (LoRA) and Reinforcement Learning from
Human Feedback (RLHF).

In the domain of scientific research, LLMs specially pre-trained
on scientific-related corpora have been proposed (e.g. Galactica
[11], Minerva [9]). These models aim to assist in different stages of
the scientific research pipeline.

ACM SIGCOMM Computer Communication Review

However, all these solutions have the potential risk of hallucina-
tion, i.e., the generation of content that is not grounded in factual
information but is instead a product of the model’s creative extrapo-
lation. This phenomenon occurs even when the models are trained
with a high-quality and highly curated corpus of data, as in the
case of Galactica [11]. Moreover, hallucination may have serious
implications in critical domains such as healthcare [5]. In order to
reduce the hallucination phenomenon and provide reliable factual
information, other LLM-based approaches have been proposed as
explained in the next section.

2.3 Retrieval-Augmented Methods

LLMs have demonstrated the ability to retain factual information
within their parameters and excel in achieving state-of-the-art
performance when fine-tuned for natural language processing
tasks. However, the acquired world knowledge is implicitly en-
coded within the parameters of the underlying neural network,
which poses a challenge in discerning what knowledge is stored
in the network and where. Consequently, LLMs have serious lim-
itations to i) access and precisely manipulate knowledge; ii) add
new information or include updates to the current knowledge.
Thus, task-specific architectures can outperform language mod-
els in knowledge-intensive tasks! [4, 8].

To improve the performance in knowledge-intensive tasks, some
works in the literature propose hybrid models that combine a
non-parametric memory (e.g., a textual knowledge corpus such
as Wikipedia) with a pre-trained parametric memory (e.g., a LLM)
[4, 8]. This architecture retrieves relevant information from the
non-parametric memory, which is later processed and interpreted
by the parametric memory (usually a language model), resulting
in more factual and specific answers. Moreover, this architecture
allows us to directly modify or expand the knowledge stored in
the parametric memory without having to modify the parametric
memory.

REALM [4] augments a masked language model with a differ-
entiable retriever, which gathers knowledge from a textual knowl-
edge corpus. Both the language model and the retriever are trained
together end-to-end according to the language model objectives.
This strategy poses a significant computational challenge since the
backpropagation through the retriever must consider millions of
documents in the textual knowledge corpus. Moreover, REALM
only explores open-domain extractive question answering, i.e., its
objective is to predict masked tokens in a sentence.

The authors in [8] expand this idea by proposing the retrieval-
augmented generation (RAG) methodology for sequence-to-sequence
(seq2seq) language generation. RAG considers a retriever based on
Dense Passage Retrieval (DPR) [7] and a seq2seq model (e.g., BART
architecture) for language generation. The DPR retriever follows a
bi-encoder architecture, one for the queries and the other for the
documents in the knowledge corpus. This method can be fine-tuned
on any seq2seq task, whereby both the generator and retriever are
jointly learned. In the fine-tuning phase, only the query encoder is
trained. This reduces considerably the computational burden com-
pared to REALM, which periodically updates the document index

!'This term refers to tasks that humans could not reasonably be expected to accomplish
without relying on an external knowledge source.

Volume 48 Issue 1, July 2024

during pre-training [4]. The results in [8] show that RAG responses
are more factual, specific, and diverse than other baselines based on
language models. For these reasons and given the nature of the task
involved in telecommunication standards, we propose a framework
based on RAG detailed in the next section.

3 TELECOMRAG DESIGN

This section details the conceptual design of the framework, re-
ferred to as TelecomRAG. It mainly relies on RAG with some prac-
tical modifications. This solution combines information retrieval
techniques and language models. As detailed in the previous sec-
tion, this combination is more effective than language models alone
in knowledge-intensive tasks by providing more factual answers.
Moreover, there are several advantages of generating answers in-
stead of just extracting them directly from the knowledge base. For
example, we may need to combine and elaborate the information in-
cluded in several documents to obtain the answer to a specific query.
Also, sometimes documents can contain clues about an answer but
not the literal response.

TelecomRAG comprises two stages. In the first stage, we generate
a vector database from the Telecom knowledge base. This stage is
executed offline before launching the system. The vector database
can be updated whenever new files need to be considered (e.g., new
3GPP releases or document updates). The second stage is executed
for every user query and establishes the conversational question-
answering pipeline.

3.1 Generation of Telecom vector database
(Offline stage).

The vector database creation involves the generation of embedding
representations of the files in the Telecom knowledge base. Em-
beddings are dense vector representations in a latent space and
they aim to capture the semantic meaning of the content. Thus,
the embedding of two different documents should be close in the
vectorial space if the content of these documents is related (even
if they use completely different words). Based on this, documents
with content related to a query can be retrieved and the system’s
output can be grounded on factual information contained in these
documents.

As an initial step, the files in the Telecom Knowledge Base need
to be cleaned and chunked. The configuration of the chunking
is crucial. Overly short chunks provide insufficient information,
while excessively long passages hinder the creation of a rich se-
mantic space and may exceed the LLM’s context window limit.
The documents are divided into passages (referred to as documents
henceforth) of a fixed number of words with an overlap between
consecutive chunks. For each document, one embedding is com-
puted and stored in the vector database. A common practice to
compute the embedding is to use a language model based on the
BERT architecture [3, 8].

3.2 Document Retrieval and Presentation
(Online stage).

The pipeline of the online stage is depicted in Fig. 1, comprising
several building blocks: i) the retriever, which processes the input
query, gathers related documents from the knowledge base, and

ACM SIGCOMM Computer Communication Review

outputs the LLM input; ii) the history module, which stores past
queries and responses; iii) the response generation and optimization
module, which receives the LLM input and generates the final
output. In the following, we detail the steps of the online pipeline.

First, the retriever generates the standalone query based on the
user’s new query and the history of past queries and responses. It
is important for the standalone query to be self-contained for the
retrieval step. If we only use the new query, relevant context content
may be missing. Conversely, if we input the full past conversation,
irrelevant information may hinder an accurate retrieval. Therefore,
the standalone query is generated by an LLM taking as input the
new user’s query and the history provided by the history module.

Second, the embedding of the standalone query is computed
using an encoder. We use the same encoder as in the offline stage
allowing the documents and the queries to be encoded in the same
latent semantic space.

Third, we perform a semantic search in the vector database. We
look for document embeddings that are similar to the encoded
query based on a similarity metric. As mentioned before, the em-
beddings capture the “gist” of the text regardless of its length or the
specific wording. Given that the dimensionality of the embeddings
is usually high and the vector database can contain a large number
of embeddings, an efficient search algorithm is needed to reduce the
computational burden. We retrieve K documents from the knowl-
edge base whose embeddings obtained the highest similarity metric
value.

Fourth, we compose the LLM input with the standalone query,
the K retrieved documents, and the history of queries and outputs,
as shown in Fig. 1. The LLM input is passed to the Base LLM in the
response generation & optimization module.

Fifth, the Base LLM generates a tentative output based on the
LLM input. To adapt the answer to different contexts, we use role-
playing prompting techniques. In some cases, we may need a very
detailed and comprehensive answer. To this end, we can assign
the LLM the role of a “standard expert” and the user the role of a
“non-experienced trainee”. Based on this, we can generate a prompt
as follows: “Assume you are a 3GPP standard expert and need to
provide a very comprehensive answer to a non-experienced trainee.”
Thus, the tone and verbosity of the output can be easily adjusted.

Sixth, the tentative output generated by the Base LLM is checked
by the verification & optimization module. The goal of this module
is to check the appropriateness of the output. For example, if no
documents are retrieved, a predefined message is sent to the user
informing that there are no documents in the knowledge base
related to the input query. Also, improper outputs can be filtered
based on keywords. In other cases, the user can actively participate
in the verification & optimization loop by, for example, improving
the query or discarding irrelevant parts of the retrieved documents
or history manually. Once the verification & optimization is passed,
the system outputs the final response.

4 IMPLEMENTATION AND EXAMPLE OF
OPERATION

In the following, we present our implementation of the above design
(Section 4.1) and then, we showcase the operation of the framework
using an example query (Section 4.2).

Volume 48 Issue 1, July 2024

s

ﬁ?etriever I LLM input @esponse Generation & Optimization\
| I Standalone .
LLM L Base LLMs Tentative
(Query condenser) (Answer elaborator) Output

Query
v Retrieved doc 1 J- v

Standalone Query :
Retrieved doc K
istory \

[Semantic search)

\C D

[\Verification &
\ Optimization

Query

History module |
(Past queries and outputs) ’

SDO docs
ETS{Q’%}‘; N x@

Final output

Vector
database

ORAN

Figure 1: TelecomRAG: Architecture of the RAG-based Telecommunication Standards Assistant.

Table 1: ECN Failure Indication data from the correct 3GPP specification document [1, Section 8.30].

Information
Procedure Initiated Information element name | element Information element description
required
. Context Mandatory This information element indicates the context for the bearer ter-
ECN Failure S
Indication IMS-AGW mination.
Bearer Termination Mandatory This information element indicates the bearer termination for
which the ECN failure is reported.
ECN Error Indication Mandatory This information element indicates an ECN failure event.
ECN Failure Context Mandatory This information element indicates the context where the com-
L IMS-ALG
Indication Ack mand was executed.
Bearer Termination Mandatory This information element indicates the bearer termination where
the command was executed.

Table 2: What are the information elements included in the “ECN Failure Indication”, and how are they defined?

TelecomRAG’s response

The ECN Failure Indication procedure, as described in the context of 3GPP standards, is used to report ECN (Explicit Congestion Notification) related failures. This procedure
is part of the communication between IMS-ALG (IP Multimedia Subsystem - Application Layer Gateway) and IMS-AGW (IP Multimedia Subsystem - Access Gateway).
The specific information elements involved in the ECN Failure Indication procedure are as follows:
(1) Context: This mandatory information element indicates the context for the bearer termination. The context provides the necessary background or situation
associated with the bearer that is being terminated.
(2) Bearer Termination: This mandatory information element indicates the bearer termination for which the ECN failure is being reported. The bearer termination
refers to the point where a particular data session or communication is being terminated.
(3) ECN Error Indication: This mandatory information element indicates an ECN failure event. An ECN failure event is a situation where the ECN mechanism has
detected congestion in the network, but due to some error, the congestion notification could not be conveyed or processed as expected.
In the ECN Failure Indication procedure, when the IMS-AGW receives any IP headers indicating ECN Congestion Experienced (ECN-CE), it should trigger rate adaptation in
accordance with the specifications given in 3GPP TS 26.114. If there is an ECN failure, the IMS-AGW reports this failure to the IMS-ALG using the ECN Failure Indication
message containing the aforementioned information elements.
Additionally, the ECN Failure Indication Acknowledgment (Ack) is used to acknowledge the receipt of the ECN Failure Indication. It also contains the Context and Bearer
Termination information elements, which indicate the context and bearer termination where the command was executed.

References: “IP Multimedia Subsystem (IMS) Application Level Gateway (IMS-ALG) - IMS Access Gateway (IMS-AGW) interface” 3GPP Technical Specification 23.334

4.1 Implementation

For the implementation of the RAG-based Telecommunication Stan-
dard assistant, we opted for Langchain [12], a framework that pro-
vides an array of built-in wrappers and utilities designed to extract
reasoning capabilities from language models. Langchain provides
most of the needed functionalities to implement the framework, it
is well-documented and allows an agile implementation.

The first step is to build the knowledge base of standards. In
our example, we use the complete set of 3GPP release-16 and

ACM SIGCOMM Computer Communication Review

release-18 standard specification documents. These documents are
in various formats (PDF, TXT, DOCX, DOC), which can be read-
ily processed by the DirectorylLoader method from the library
Langchain.document_loaders, along with custom functions for
progress tracking, multi-threading, and error handling (e.g., cor-
rupted file formats).

We divided the data into documents of 4000 characters with
a 100-characters overlap between consecutive chunks using the
CharacterTextSplitter method fromLangchain.text_splitter.

Volume 48 Issue 1, July 2024

TelecomRAG: an Assistant for Telecommunication Standards

Pleas ask questions about Standards

Request Response

What are the information elements included in the
'ECN Failure Indication,' and how are they defined?

The ECN Failure Indication procedure, as described
in the context of 3GPP standards, is used to report
ECN (Explicit Congestion Notification) related
failures. This procedure is part of the
communication between IMS-ALG (IP Multimedia
Subsystem - Application Layer Gateway) and IMS-
AGW (IP Multimedia Subsystem - Access Gateway).

The specific information elements involved in the
ECN Failure Indication procedure are as follows:

1. **Context**: This mandatory information
element indicates the context for the bearer
termination. The context provides the necessary
background or situation associated with the bearer
that is being terminated.

Chat History

Figure 2: Graphical User Interface of TelecomRAG, an Assis-
tant for Telecommunication Standards.

For every document, we then generated an embedding using the

OpenATl’s text-embedding-ada-002 embedding model through

the Langchain.embeddings.openai library. This embedding model
is also used to encode the standalone query at the retriever. After

all the text documents are encoded, we store the embeddings in a

vector database using Chroma, an Al-native vector database from

Langchain.vectorstores.

We implement the pipeline of the online stage using the method

ConversationalRetrievalChain fromLangchain.chainslibrary.

We use the OpenAI API to query an LLM (GPT model) for the query
condensation (at the retriever) and for the answer elaboration (at
the response generation & optimization module). In our example,
we use gpt-4-1106-preview.

We use cosine similarity as the similarity metric in our system.
Cosine similarity is a computationally efficient solution that has
proven good performance in this type of application. As vector
datasets grow, semantic searches become increasingly computa-
tionally expensive. Consequently, approximate search algorithms
are used to balance performance and speed in the search. In our
case, we use an approximate nearest neighbor (ANN) algorithm
called Hierarchical Navigable Small World (HNSW) implemented in
Chroma. We consider the K = 4 documents with the highest cosine
similarity obtained by HNSW algorithm to be included in the LLM
input.

We wrapped up the system’s pipeline into a user-friendly web
interface using Gradio that resembles that of conventional Al chat-
bots such as Gemini or ChatGPT, as shown in Fig. 2.

4.2 Example of operation

We evaluated TelecomRAG on a large set of technical questions de-
rived from 3GPP specifications. The assistant consistently provided
thorough, accurate, and technically detailed responses useful for
telecom engineers, including references to specific 3GPP documents
for verification.

We showcase the operation of the framework with the query
“What are the information elements included in the ’ECN Failure
Indication’, and how are they defined?”, which is described in [1]

ACM SIGCOMM Computer Communication Review

(Section 8.30) and summarized in Table 1 for validation. Table 2
shows the response provided by TelecomRAG, including a reference
to the right 3GPP document. We can observe that the response
shows accuracy and verifiability.

Finally, we issue the same queries to general-purpose assistants
such as ChatGPT-4, Gemini Ultra or TelecomGPT (a third-party ap-
plication built on ChatGPT to provide specialization on the telecom-
munication sector?). The responses are summarized in Table 3 for
the query “What are the information elements included in the ’'ECN
Failure Indication’, and how are they defined?” presented earlier. As
it can be observed, RAG-based systems are expected to provide
more useful responses for Telecom-based use cases.

5 DISCUSSION AND FUTURE WORK

This Editorial Note explored the use of LLM-based solutions, in
particular, Retrieval- Augmented Generation (RAG), for building
telecommunication standard assistants. We discussed the different
aspects of the conceptual design of the framework as well as the
implementation details needed to realize such kind of systems. The
solution is simple and practical, and thanks to today’s open-source
libraries, the development of such tools becomes very accessible.

The use of RAG brings many advantages. First, it enhances the
standalone LLMs by grounding the responses to factual informa-
tion. Second, RAG allows the LLMs to elaborate answers based on
multiple documents or sources of knowledge (e.g., mailing lists,
online resources, etc.). Last but not least, the chat close loop allows
the iterative refinement of the response to satisfy the user’s needs.
However, the main disadvantage associated with generative mod-
els is hallucination. Although the RAG approach minimizes this
phenomenon, the responses generated by LLMs are not free from
factual errors when, for example, the information provided in the
retrieval phase is insufficient. Unfortunately, this issue is difficult
to detect and fix in this kind of system.

The application of RAG to telecom standard documents also
brings many challenges to be addressed in future work. Some forms
of data representation are difficult to process by the system, such
as tables, figures, and diagrams. The system may struggle with
acronyms due to the lack of context, which may lead to hallucina-
tions. Moreover, the cross-references across different sections (or
even documents) very common in standard documents are difficult
to follow by the system, limiting the completeness of the responses.
Finally, the retrieval techniques used in RAG systems are based on
semantic similarity. However, this approach needs to be extended to
consider other forms of information representation such as pictures,
diagrams, or even network logs.

In conclusion, while this study has addressed several key aspects
of RAG-based systems in telecommunications, there are many open
issues and more research efforts are required in this area. We believe
that this Editorial Note not only opens the door to new research
avenues but also has the potential to increase the interest of the
academic and industrial communities in this promising approach.
The integration of RAG-based systems holds significant promise
for enhancing various applications within the telecommunications
field, offering substantial value and opportunities.

2 Available in https://chat.openai.com/g/g-eSwyzwwDV-telecom-gpt.

Volume 48 Issue 1, July 2024

https://chat.openai.com/g/g-eSwyzwwDV-telecom-gpt

Table 3: What are the information elements included in the “ECN Failure Indication’, and how are they defined?

ChatGPT 4’s response

The “ECN Failure Indication” is a term that is typically associated with network protocols, specifically with mechanisms that deal with congestion control. ECN stands for
Explicit Congestion Notification. This feature enables network nodes to notify each other about network congestion without dropping packets. However, the specific term
“ECN Failure Indication” isn’t standard, and you may be referring to situations where ECN signaling fails or is not properly communicated between network entities. Here’s
a detailed look at the typical elements related to ECN, which might be relevant to a failure scenario:

(1) ECN-Capable Transport (ECT) - This is a codepoint in the IP header that indicates that the end-points of the TCP connection are ECN-capable, meaning they
can both send and receive ECN signals. There are two ECT codepoints, ECT(0) and ECT(1), which serve slightly different purposes but essentially signal ECN
capabilities.

Congestion Experienced (CE) - This is another codepoint in the IP header used by routers experiencing congestion to indicate this status to the end-points of the
transmission. When a packet marked with an ECT codepoint encounters congestion, routers that support ECN can mark these packets as CE instead of dropping
them.

ECN Echo (ECE) - This is a flag in the TCP header used to indicate that a segment with the CE codepoint has been received. The receiving end uses this flag to
notify the sender about the congestion.

Congestion Window Reduced (CWR) - This flag is set by the sending end to signal to the receiving end that it has received the ECE flag and has reduced its
congestion window size accordingly. This is an acknowledgment that the sender is responding to the congestion.

@

=

3

N

“

=

When discussing “ECN Failure Indication”, it might relate to any anomalies or failures in the signaling process among these elements. Here are a few scenarios where ECN
could “fail”:

o Unsupported ECN: If any part of the path between sender and receiver does not support ECN, then the ECN signals (ECT, CE) may not be handled or propagated
correctly.
Incorrect ECN Implementation: Bugs or incorrect implementations in routers or end hosts can lead to incorrect ECN behavior, such as failing to set CE flags
despite congestion or not reacting to ECE flags.

e ECN Negotiation Failure: During the TCP handshake, both sides must agree to use ECN. If there is a failure in this negotiation, ECN will not be used, even if both

endpoints support it.

Understanding specific ECN failure modes would depend on the context in which ECN is being used (like in specific network architectures or for certain types of traffic) and
the specific tools and methods used for diagnosing such failures.

Gemini Ultra’s response

Unfortunately, there isn’t a universally defined “ECN Failure Indication” with a set list of information elements. “ECN” can refer to different things depending on the context,
and the specific details of a failure indication would depend on the particular system or protocol involved. Here’s a breakdown of the possibilities:

o IP Networking: In the context of Internet Protocol (IP) networking, ECN (Explicit Congestion Notification) is a mechanism for routers to signal congestion to
senders. It’s unlikely there would be a separate “ECN Failure Indication”. Issues with ECN functionality might be reported through other mechanisms within the
specific routing protocol.

e Other Fields: ECN can also stand for Engineering Change Notice or Entry Change Notice in various fields. A failure related to an ECN would likely be specific to
the system or process that uses those terms and wouldn’t have a standardized format.

Here are some ways to get more information:

o Context Clues: If you encountered the term “ECN Failure Indication” somewhere specific, look for surrounding information that might indicate the context (e.g.,
manuals, software documentation).

o System Identification: If you know the system or protocol where you came across this term, searching for its documentation might reveal details about error
reporting mechanisms.

If you can provide more context about where you encountered “ECN Failure Indication”, I might be able to offer more specific guidance.

TelecomGPT response

The “ECN Failure Indication” message in the context of telecommunications and protocols isn’t explicitly defined in the documents I have available, such as the SMPP
specifications and various telecom-related white papers and presentations. It appears you might be referring to a specific protocol message or error indication that might be
part of a broader telecommunications standard or proprietary system not covered in these documents. If the “ECN Failure Indication” you are asking about is related to a
specific application, protocol, or vendor-specific implementation, it would be helpful to have more context or details about the system in which this term is used. If it is part
of a standard not covered in the documents or discussions I have access to, you may need to consult the specific documentation or standards applicable to that protocol or
system. If you can provide more details or clarify the specific protocol or context in which you encountered “ECN Failure Indication”, I can assist you better. Alternatively, if
this is related to a standard or system, the relevant documentation or technical support resources for that system may be the best source for detailed information.

REFERENCES [9] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk

(1]

(2]

[3] Jacob Devlin et al. 2018. Bert: Pre-training of deep bidirectional transformers for

(4]

(5]

Technical Specification 23.334. 3rd Generation Partnership Project (3GPP).

Jared Kaplan et al. 2020. Scaling laws for neural language models. arXiv preprint

3rd Generation Partnership Project (3GPP). 2021. IP Multimedia Subsystem (IMS) Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo

Application Level Gateway (IMS-ALG) - IMS Access Gateway (IMS-AGW) interface. Gutman-Solo, et ali 2022. Solving qugntitative rgasoning problems with language
models. Advances in Neural Information Processing Systems 35 (2022), 3843-3857.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, [10] Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi,]gson Wei, Hyung Won
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Chung, Nathan Scales, Ajay Tanwani, Heathe? Cole-Lewis, Stephen }')f(’hl' et'al.
Askell, et al. 2020. Language models are few-shot learners. Advances in neural 2022. Large language models encode clinical knowledge. —arXiv preprint
information processing systems 33 (2020), 1877-1901. 1] Ia{erv:iZIT.ISI:/«? (2922; das. Guillem C i Th Scial Anth

[oss Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony

Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert Sto-
jnic. 2022. Galactica: A large language model for science. arXiv preprint
arXiv:2211.09085 (2022).

Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Creating large language model

Katharina Jeblick et al. 2023. ChatGPT makes medicine easy to swallow: an applications utilizing langchain: A primer on developing llm apps fast. In Interna-

exploratory case study on simplified radiology reports. European radiology tional Conference on Applied Engineering and Natural Sciences, Vol. 1. 1050-1056.
(2023), 1-9. [13] Jason Wei et al. 2022. Chain-of-thought prompting elicits reasoning in large

language models. Advances in Neural Information Processing Systems 35 (2022),
24824-24837.

[14] Jason Wei et al. 2022. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682 (2022).

[15] Shijie Wu et al. 2023. Bloomberggpt: A large language model for finance. arXiv
preprint arXiv:2303.17564 (2023).

language understanding. arXiv preprint arXiv:1810.04805 (2018).
Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. 2020.
REALM: Retrieval-Augmented Language Model Pre-Training. In International

conference on machine learning. PMLR, 3929-3938. (12

arXiv:2001.08361 (2020).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Dangi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktaschel, et al.
2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459-9474.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, July 2024

	Abstract
	1 Introduction
	2 LLMs and Language Generation
	2.1 Background on LLMs
	2.2 LLMs for specific application domains
	2.3 Retrieval-Augmented Methods

	3 TelecomRAG Design
	3.1 Generation of Telecom vector database (Offline stage).
	3.2 Document Retrieval and Presentation (Online stage).

	4 Implementation and example of operation
	4.1 Implementation
	4.2 Example of operation

	5 Discussion and Future Work
	References

