
FairRIC: Real-time Fair Allocation in
O-RAN with Shared Computing

Fatih Aslan∗, Jose A. Ayala-Romero†, Andres Garcia-Saavedra†, Xavier Costa-Perez†‡, George Iosifidis∗
∗Delft University of Technology, The Netherlands, †NEC Laboratories Europe GmbH, Germany

‡i2CAT Foundation and ICREA, Spain

Abstract—The deployment of O-RAN systems on general-
purpose computing platforms represents a significant paradigm
shift, promising remarkable performance improvements. However,
these architectures may potentially increase both the capital
and operational expenses of the network. The processor pooling
concept is a promising solution to address this problem, consisting
of a set of processing units (PUs) in the O-Cloud shared by
several virtualized BSs (vBSs). Nevertheless, this strategy requires
sophisticated resource assignment mechanisms to provide the
expected gains in terms of cost and reliability. This paper proposes
a novel online learning framework that assigns computing
resources to vBSs in real-time (e.g., every TTI), thus handling
the burstiness of real traffic loads. Our algorithm relies on online
convex optimization (OCO) theory, extending state-of-the-art
approaches in long-term fairness and constrained optimization
and allowing discrete decisions. Our method offers an intrinsic
closed-form iteration, speeding up the computation process and
consequently allowing real-time operation. Moreover, our solution
has guarantees in terms of fairness among the vBSs while adhering
to long-term energy constraints over the entire operation horizon.
We validate our theoretical findings via simulation and evaluate
experimentally the algorithms in an O-RAN platform.

I. INTRODUCTION

A pivotal advancement in future mobile networks is the vir-
tualization of the Radio Access Network (vRAN), particularly
vBSs, and their deployment on general-purpose computing
hardware [1]. vRANs offer unprecedented flexibility, enabling
dynamic adaptation of vBSs to varying channel conditions
and diverse user demands for throughput, latency, and other
performance metrics. To meet these demands, the Open
RAN (O-RAN) architecture incorporates computing pools (O-
Cloud) comprising heterogeneous PUs, including CPUs and
accelerators like ASICs, FPGAs, and GPUs. This approach
facilitates efficient management of computational workloads
across vBSs, representing a paradigm shift in RAN technology
with the potential for substantial performance gains [1].

However, the virtualization of RANs is expected to increase
the Operating Expenditures (OpEx) of networks. The reason
is that, unlike legacy base stations, the energy required for
executing software vBS functions becomes significant and
can potentially exceed that of wireless transmissions [2]. This
issue, compounded by the increasing densification of RANs, is
expected to escalate the energy costs associated with vRANs
to prohibitively high levels for future mobile networks [3], [4].

A potential direction to alleviate this problem is the concept
of processor pooling. By default, PUs are co-located with and
exclusively used by individual vBSs, leading to low utilization
under real workloads [5]. Sharing multiple PUs among multiple
vBSs can reduce energy consumption (OpEx) and distribute
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Fig. 1: Normalized load of 3 cells at small timescales.

the capital expenditure (CapEx) of such equipment, making
the vBSs more affordable.

However, processor pooling necessitates sophisticated re-
source allocation mechanisms. Solving this problem is chal-
lenging due to several factors. First, the heterogeneity of PUs,
with varying processing capacities and energy consumption
profiles, makes them better suited for specific tasks (e.g.,
small data chunks or transport blocks (TBs)). Second, the
bursty and time-varying nature of vBS load demands dynamic
resource allocation. Third, the processing time for traffic is
highly volatile, depending on parameters like signal modulation
coding scheme (MCS), signal-to-noise ratio (SNR), and TB
length. Moreover, incorrect resource allocation can lead to PU
saturation, causing user data loss and degrading network QoS.

Previous works have addressed computing resource assign-
ment in O-RAN systems using processor pooling [5], [6],
[7]. These approaches align with O-RAN specifications by
considering decision-making at both near-real-time (near-RT)
and non-RT timescales [6], [7]. However, as shown in the litera-
ture [8] their decision granularity may be too coarse to adapt to
the inherent burstiness of traffic. This is also confirmed by our
own experiments. Using Falcon [9], we collected millisecond-
resolution workload data from diverse cells operated by multiple
providers in Madrid, Spain. Fig. 1 illustrates this burstiness,
showing the instantaneous load of three production cells over
10 seconds at different times. The bursty nature of real-world
RAN traffic at small timescales necessitates real-time control
strategies to effectively exploit multiplexing opportunities. To
manage traffic burstiness, the authors in [5] propose a real-time
computational resource allocation framework. However, their
algorithm relies on a greedy heuristic without performance
guarantees, and throughput loss is not fairly distributed among
vBSs when PUs are saturated.

This paper presents FairRIC, a novel real-time fair resource
allocation algorithm for virtualized O-RAN platforms. Our
solution dynamically and fairly assigns workloads to het-
erogeneous PUs while meeting long-term energy constraints.



By addressing both fairness and real-time operation, FairRIC
aims to optimize resource utilization and enhance network
performance, effectively handling the burstiness of real traffic
loads. FairRIC builds upon OCO theory [10], [11], and
specifically leverages the well-known Follow-The-Regularized-
Leader (FTRL) framework [12]. We modify FTRL making it
fit for our specific use case, namely, we optimize for long-
term fairness of the vBSs sharing the O-Cloud resources
following a primal-dual approach [7], [13] and restrict the
power consumption using Lazy Lagrangians [14]. We propose
a novel solution for long-term fairness that departs from the
traditional primal-dual update approach, where both primal and
dual variables are updated iteratively [7], [13]. Our method
offers an intrinsic closed-form iteration, allowing for the direct
calculation of the dual variable (for long-term fairness) solely
based on the past primal variables and a concave utility function.
This approach eliminates the need for separate updates of
the dual variable, streamlining the computation process and
allowing real-time operation. Moreover, we extend previous
works on long-term fairness and constrained optimization and
make the framework suitable for discrete decisions, required
by real-time O-RAN computing resource assignment. Finally,
we conduct an extensive set of simulation and experimental
studies demonstrating significant improvements in terms of
fairness and efficiency over existing methods.

II. SYSTEM MODEL & PROBLEM STATEMENT

Background. The physical layer (PHY) of cellular base
stations, responsible for baseband processing, operates under
stringent deadlines [5], [8]. Radio scheduling decisions are
made at each Transmission Time Interval (TTI) over TBs,
which are indivisible data chunks sent between the vBSs and
users. For the uplink, the vBS must decode the TBs coming
from users within each TTI, utilizing PUs that are typically
located at the O-Cloud. The O-Cloud, a central component of
O-RAN, provides computational resources through a pool of
heterogeneous PUs, including CPUs and hardware accelerators
(HAs) such as GPUs and FPGAs. In our scenario, we consider
these PUs to be shared among multiple vBSs, making fair
and efficient resource allocation essential for meeting real-time
processing requirements. The PUs available in the O-Cloud
exhibit varying performance characteristics. CPUs, for instance,
are cost-effective and energy-efficient but relatively slow
for processing PHY signals. As a result, relying solely on
CPUs may not meet strict deadlines. In contrast, HAs such
as GPUs and FPGAs are more expensive (between 5 and
50× more expensive than a CPU core) and energy-hungry.
While the opportunistic use of CPUs can reduce energy
usage, it may also introduce delays in decoding. TBs not
decoded within the deadline (e.g., 1 ms) are considered lost
and require retransmission. Consequently, effective sharing of
computational resources is vital for ensuring network reliability
and maintaining users’ QoS.

Notation. Vectors are denoted by boldface lowercase letters
and matrices are denoted by boldface capital letters. Subscript
denotes the time index and element of a vector/matrix. [·]+
denotes max{0, ·}, and ∥ · ∥2, ∥ · ∥∞ denote ℓ2 and ℓ∞ norm
respectively. We use the shorthand notation x1:T =

∑T
t=1 xt

and write {x}1:T to denote the sequence {x1, x2, · · ·xT }. All
proofs are provided in the appendix.

We tackle the compute load assignment problem in O-RAN,
where a set I of vBSs assign their workloads to a set J of
PUs. In O-RAN, an algorithm must make decisions every 1 ms
(matching the TTI) to qualify as a real-time algorithm. Hence,
each vBS must be assigned to exactly one PU, as the TBs
are atomic and cannot be split across multiple PUs. We define
the assignment vector x ∈ {0, 1}I·J , with xij = 1 if vBS i is
assigned to PU j, that belongs to set:

X d =

{
x ∈ {0, 1}I·J ,

∑
j∈J

xij = 1, ∀i ∈ I
}
.

We model the utility gained from the decision x at time-
slot t with utility vector ut(x) : RI·J 7→ RI . We model the
assignment decisions as an online (non)convex optimization
problem [15], where the utility function can be chosen flexibly
(for each type of O-RAN, for instance) as long as it is concave,
positive, bounded, and Lipschitz continuous. One meaningful
choice is to consider the normalized throughput, i.e., a portion
of successfully decoded bits within the deadline of 1 ms of
each vBS. Sec. IV provides details on how to calculate the
normalized throughput.

We measure the fairness of allocations using the generalized
α-fairness function Fα(u) =

∑
i∈I

fα(ui), [16], [17], where

fα(ui) =

{
u1−α
i −1

1−α , for α ∈ R≥0\{1},
log(ui), for α = 1.

Note that we calculate the fairness directly over the utility
function, capturing the more general utility-fair model.

OCO allows us to produce dynamic decisions as good as
the best decision in hindsight even when the environment
consists of adversarial (worst-case) perturbations, namely utility
functions. This is quantified by the typical metric of regret [15].
Here, we are interested in the long-term fairness, and hence
the regret needs to be redefined. In particular, following recent
works such as [7], [13], we will be using the regret metric:

RT,α
.
= Fα

(
1

T

T∑
t=1

ut(x
⋆)

)
− Fα

(
1

T

T∑
t=1

ut(xt)

)

where xt ∈ X d are the discrete decisions produced by our
algorithm and x⋆ is a (possibly randomized) benchmark policy
(the oracle) selected with future knowledge by solving

x⋆ = arg max
x∈X c

Fα

(
1

T

T∑
t=1

ut(x)

)
, where X c is

X c =

x ∈ [0, 1]I·J ,
∑
j∈J

xij = 1, ∀i ∈ I

 .

Our goal is to ensure a vanishing regret, RT,α→0 as T→∞.
Unfortunately, off-the-shelf algorithms cannot be applied

directly to this problem, due to the time-averaging in the



argument of Fα(·) that hampers the required (for OCO) over-
time decomposition [18]. To tackle this issue, we introduce
the linearized proxy function:

Ψt(θ,x) = (−Fα)
∗(θ)− θ⊤ut(x),

where we introduce the dual variable vector θ that, as will
become clear in the sequel, track the long-term fairness metric.
In the reformulation, we utilized the Fenchel-conjugate [19,
Ch. 4], which for the considered function can be written as:

(−Fα)
∗(θ) =

{∑I
i=1

α(−θi)
1−1/α−1

1−α , for α ∈ R≥0\{1},∑I
i=1 −1− log(−θi), for α = 1.

With this reformulation at hand, we follow a primal-dual
approach over the proxy function so as to bound RT,α. Namely,
we first derive a bound for the continuous allocations, and then
prove that the discrete ones maintain this bound on expectation.

First, we define the regret using the continuous allocations:

R̂T,α
.
=Fα

(
1

T

T∑
t=1

ut(x
⋆)

)
−Fα

(
1

T

T∑
t=1

ut(x̂t)

)
, x̂t∈X c.

Using the results from [7], [13], we express this metric as:

R̂T,α ≤ R̂x
T

T
+

R̂θ
T

T
+ΣT , (1)

where R̂x
T , R̂θ

T are the primal and dual regrets, and ΣT is the
covariance between utilities ut(x

⋆) and variables θt, i.e.,

R̂x
T =

T∑
t=1

Ψt(θt,x
⋆)−Ψt(θt, x̂t),

R̂θ
T =

T∑
t=1

Ψt(θt, x̂t)−Ψt(θ, x̂t),

ΣT =
1

T

T∑
t=1

θ⊤
t ut(x

⋆)− 1

T

T∑
t=1

θ⊤
t

1

T

T∑
t=1

ut(x
⋆).

ΣT is a residual term that depends on the perturbations and
indicates that to achieve vanishing long-term fairness regret,
the environment must adhere to perturbation restrictions – see
impossibility result in [13]. Hereafter, we denote the growth
rate of ΣT = O(Tω−1) where vanishing regret requires ω < 1.

1) Primal Step: Unfolding the details of the algorithm, we
perform the primal step using the FTRL algorithm [20] with
entropic regularization due to the multi-simplex constraint X c:

x̂t+1 = arg min
x∈X c

{
r1:t(x)− x⊤g1:t

}
, (2)

where r1:t(x) is the aggregate regularization, and g1:t the total
gradient at slot t, with gt =∇x̂t

Ψt(θt, x̂t) =θ⊤
t ∇x̂t

ut(x̂t).
And the proposed regularizer is: r1:t(x) =

η1:t

(
I log J+

∑
i∈I

∑
j∈J

xij log xij

)
, η1:t=η

√√√√ t∑
τ=1

∥gτ∥2∞ (3)

Now, setting η=min
{
1/2,

√
2
√
2/ log J

}
, r1:t(x) becomes

1-strongly-convex w.r.t. norm ∥x∥(t) = ∥x∥1
(
η1:t/I

)1/2
and

thus applying [7, Lemma 4.2], the primal regret is:

R̂x
T ≤

(
2
√
2I

η
+ ηI log J

)√√√√ T∑
t=1

∥gt∥2∞.

Moreover, the closed-form solution for (2) is [7, Prop. 2]:

x̂t+1,Ji+j =
exp(g1:t,Ji+j/η1:t)∑J
j=1 exp(g1:t,Ji+j/η1:t)

. (4)

2) Dual Step: For the dual step, we utilize the strong
convexity1 of the proxy function and use the Follow-The-
Leader (FTL) algorithm2 to achieve logarithmic regret [20]:

θt+1 = argmin
θ∈R

t∑
τ=1

Ψτ (θ, x̂τ ). (5)

Observe that Ψt(θ, x̂t) is 1-strongly convex w.r.t. norm
∥θ∥(t) =

√
tϕ∥θ∥2 and using [20, Sec. 3.6] we get:

R̂θ
T ≤ αK2

2uα+1
min

(1 + log T ),

where ∥∇θΨt(θ, x̂t)∥2≤K. The following new result provides
the intrinsic closed-form solution for the dual iteration (5).

Proposition 1. The closed-form solution for θt+1 in (5), is

θt+1 = −
(
1

t

t∑
τ=1

uτ (x̂τ )

)−α

. (6)

This result follows from the definition of Ψt(θ,x) and
Fenchel conjugate. We omit the details due to lack of space.
Interestingly, due to using FTL, the dual regret can be ignored
as it has much smaller growth rate of O(log T ) (instead
of O(

√
T )) and also the algorithm does not require the

knowledge of umin and umax. What is more, the closed-
form iteration admits an intuitive explanation: the algorithm
penalizes the allocations by their accrued utilities, and the
degree of this penalty increases with α. When α = 1, the
iteration resembles the Proportional Fair Scheduler [21], which
takes into consideration not only the current utility but the total
accrued utility until each time-slot.

Inserting these regret bounds to (1), we obtain:

R̂T,α ≤ 1

T

(
2
√
2I

η
+ ηI log J

)√√√√ T∑
t=1

∥gt∥2∞

+
αIu2

max

2uα+1
min

1 + log T

T
+O(Tω−1).

which states that for the continuous allocations we achieve
sublinear regret, conditioned on the perturbations satisfying the

1The Hessian matrix ∇2
θΨt(θ, x̂t) = HI×I is diagonal with entries

Hi,i = (−θi)
−α+1

α /α ≥ uα+1
min /α.

2Regret guarantee in [7], [13] requires θ ∈ [−u−α
min,−u−α

max]
I , where

umax= max
1≤t≤T

(∥ut(x̂t)∥∞), umin= min
1≤t≤T

(∥ut(x̂t)∥−∞). Indeed, θt+1

obtained with (6) adheres to this constraint.



Algorithm 1 Real-time Fair Algorithm
Require: I , J , α ≥ 0.

1: η = min

{
1/2,

√√
2/log J

}
2: x̂1 ∈ X c, sample x1 from x̂1 ▷ Initial decision
3: for t = 1 to T do
4: Observe ut(·), calculate ut(x̂t)
5: Compute θt+1 with (6) ▷ Calculate dual var
6: Compute x̂t+1 with (4) ▷ Calculate continuous primal var
7: Sample xt+1 from x̂t+1 using inverse transform sampling

over each simplex
8: end for

impossibility result in [13] (last term). Now, using this result,
we derive the regret bound for the discrete decisions {x}1:T
by taking the expectation of R̂T,α over x. This is formally
stated in the next theorem, which we prove in the appendix.

Theorem 1. Alg. 1 ensures the expected regret bound
E[RT,α] = R̂T,α for linear utility functions, otherwise

E[RT,α] = E

[
Fα

(
1

T

∑
t∈T

ut(x
⋆)

)
− Fα

(
1

T

∑
t∈T

ut(xt)

)]

≤ 1

T

(√
2I

η
+ ηI log J

)√√√√ T∑
t=1

∥gt∥2∞

+
αIu2

max

2uα+1
min

1 + log T

T
+

O(Tω)

T
+

L
√
IJ

2
,

where L ≥ ∥∇x̂ut(x̂)∥2,∀t ≤ T is the Lipschitz constant.

Discussion. There are some important notes in order here.
First, observe that the first term in the bound grows adaptive
to the gradients, and in the worst case it is O(

√
T ). Hence,

when the environment is “easy” (small and smooth gradients),
we achieve better results. Also, the second term is negligible
in the growth rate (due to FTL and strong convexity), and
the last two terms depend on the variation of the environment
(beyond our control). We note that the restrictions stated in [13]
regarding the third term hold here, since the dual variables are
still bounded. The last term is the quantization error [22] due
to the curvature of the utility functions, where the curvature
of the fairness function does not affect this term. As a result,
the growth rate without the quantization error is bounded as
O(Tmax{− 1

2 ,ω−1}).

III. ACCOUNTING FOR LONG-TERM CONSTRAINTS

As shown in Sec. I, a major concern for vRANs is their
energy consumption. A practical solution to this problem is
capping the average power of PUs. However, merely limiting
the power (e.g., setting fixed horizontal caps) is likely to yield
unfair performance across the vBSs and users. Here, we extend
our framework to allow the network to handle such long-term,
or budget, constraints while ensuring long-term performance
fairness. Naturally, this tool can be used to tackle the energy
(and other budget-related problems) in a principled fashion.

We introduce the constraint violation vector ft(x) of size
M , where our goal is, additionally, to achieve sublinear
accumulated constraint violation:

VT =

∥∥∥∥∥
[

T∑
t=1

ft(xt)

]
+

∥∥∥∥∥
2

.

In practical applications, the constraints can be set as, e.g.,
the maximum average power consumption, as shown in Sec.
IV-B. We assume that the violation function ft(x) is linear
(otherwise, it can be linearized [20]), i.e., ft(x) = Wtx where
Wt is a matrix of size M × IJ , and define the benchmark:

x⋆ = arg max
x∈X c

T

Fα

(
1

T

T∑
t=1

ut(x)

)
, where

X c
T =

{
x ∈ X c

∣∣∣ft(xt) ≤ 0,∀t ≤ T
}
.

Note that the benchmark is inevitably confined to satisfy the
constraints at each slot (unlike the learner’s decisions), due to
the impossibility result in such OCO problems, see [14], [23].

The basis of our algorithm here is a new Lagrange function
that tracks the budget via new dual variables. In particular, we
use the regularized Lagrangian:

Lt(x,λ)
.
= rt(x)− g⊤

t x+ λ⊤Wtx− qt(λ), (7)

where λ ≥ 0 is the dual vector (not to be confused with θ)
that penalizes the constraint violations when Wtx ≥ 0, and
gt = ∇xΨt(θt,x) as in Sec. II, while rt(x) and qt(λ) are
strongly convex primal and dual regularizers.

Using a saddle-point structure, we perform minimization in
the primal step and maximization in the dual step to converge to
an allocation with sublinear constraint violations and vanishing
fairness regret. Note that we linearized the proxy function
for fairness Ψt(θt,x) in (7) by inclusion of gt. Due to the
geometry of decision spaces, we again use negative entropy
function as primal regularizer (3) and a non-proximal quadratic
function as a dual regularizer,

q1:t(λ) = σmax


√√√√ t∑

τ=1

∥Wτxτ∥22, tβ
︸ ︷︷ ︸

σ1:t

∥λ∥22
2

,

where β ∈ [0, 1) is the parameter of the algorithm that balances
the regret and constraint violations. The decision updates are:

x̂t+1 = arg min
x∈X c

{
t∑

τ=1

rτ (x)− g⊤
τ x+ λ⊤

τ Wτx

}
, (8)

λt+1 = argmin
λ≥0

{
t∑

τ=1

qτ (λ)− λ⊤Wτ x̂τ

}
. (9)

Note that gt includes θt and keeps track of long-term fairness
while satisfying the budget constraints. Primal (continuous)
iteration (x̂t+1) can be solved in closed-form by replacing g in
(4) with g−W⊤λ and the dual iteration can be implemented
as λt+1 =

[∑t
τ=1 Wτ x̂τ/σ1:t

]
+

following [7, Proposition
1]. We define the constrained primal regret for x⋆ ∈ X c

T



Algorithm 2 Real-time Fair Alg. with Long-term Constraints

Require: I , J , α ≥ 0, β ∈ [0, 1), σ

1: η = min

{
1/2,

√√
2/log J

}
2: x̂1 ∈ X c, sample x1 from x̂1

3: for t = 1 to T do
4: Observe ut(·),Wt, calculate ut(x̂t),Wtx̂t

5: Compute λt with (9) (or provided closed-form)
6: Compute θt+1 with (6)
7: Compute x̂t+1 with (8) (or provided closed-form)
8: Sample xt+1 from x̂t+1 using inverse transform sampling

over each simplex
9: end for

as RxT

T =
∑T

t=1 Ψt(θt,x
⋆) − Ψt(θt,xt) and provide the

following bounds on continuous primal variables {x̂}1:T :

Lemma 1. Alg. 2 without the sampling step attains the
following primal regret and constraint violations:

R̂xT

T ≤ BT =
2
√
2I

η

√√√√ T∑
t=1

∥gt −W⊤
t λt∥2∞

+ ηI log J

√√√√ T∑
t=1

∥gt −W⊤
t λt∥2∞ +

T∑
t=1

∥Wtx̂t∥22
σ1:t−1

,

V̂T ≤
√
2σ1:T−1(BT − R̂xT

T ).

The next result provides the regret and constraint bounds.

Theorem 2. Alg. 2 ensures the expected long-term fairness
regret and constraint violation bounds for linear utility func-
tions:

E[RT,α] = E

[
Fα

(
1

T

T∑
t=1

ut(x
⋆)

)
− Fα

(
1

T

T∑
t=1

ut(xt)

)]

≤ 1

T

(√
2I

η
+ ηI log J

)√√√√ T∑
t=1

∥gt −Wtλt∥2∞

+
1

T

T∑
t=1

∥Wtx̂t∥22
σ1:t−1

+
αIu2

max

2uα+1
min

1 + log T

T
+

O(Tω)

T
,

E[VT ] ≤
√

2σ1:T−1(BT − R̂xT

T ),

while otherwise E[RT,α] includes an additional quantization
error of L

√
IJ/2.

Bound in Theorem 2 requires further analysis of convergence
due to λt in the first term being unbounded. Next, we
provide a detailed analysis of convergence and show that
Alg. 2 achieves vanishing regret bound and sublinear constraint
violation bound. In particular, we obtain the convergence
guarantee by bounding the growth rate of ΛT = O(T k) where
ΛT = max{∥λt∥∞}1:T+1 in the next theorem, which we prove
in the appendix.

Theorem 3. Alg. 2 without the quantization error ensures

E[RT,α] = O(Tmax{− 1
4 ,ω−1}),E[VT ] = O(T

3
4 ), if β ≤ 1/2,

E[RT,α] = O(Tmax{− β
2 ,ω−1}),E[VT ] = O(T

1+β
2 ), o/w.

Discussion. There are some important notes in order here.
First, the proposed algorithm guarantees vanishing long-term
fairness regret (with the quantization error) and, at the same
time, sublinear constraint violations independent of the utility
functions’ curvature. Fairness regret bound depends on the
environment, i.e., the severity of the perturbations (ω) and
Lipschitz constant (L). Namely, utility functions can change
arbitrarily, as long ω < 1 is satisfied. We define such
an environment in Sec. IV-A and validate the theoretical
results using Alg. 2. Moreover, we demonstrate the effects of
quantization error using a real O-RAN platform in Sec. IV-B.

Second, Alg. 2 (i) does not store the decisions at each time-
slot and only uses the accrued utilities and constraint violations
to calculate the decision at the next time-slot, and (ii) does not
include time costly operations; resulting in O(1) calculations
and storage requirements.

Finally, depending on the value of ω, an operator can balance
the fairness regret with constraint violations by setting the
parameter β. In particular, if ω is known and within the interval
(1/2, 3/4], we can set β = 2 − 2ω and ensure E[RT,α] =
O(Tω−1), and E[VT ] = O(T

3
2−ω). If ω ≤ 1/2, we can discard

the ω and obtain E[RT,α] = O(T− 1
4 ) if β ≤ 1/2, E[RT,α] =

O(T− β
2 ) otherwise; and if ω > 3/4, the bound in Theorem 3

becomes E[RT,α] = O(Tω−1),E[VT ] = O(T
3
4 ).

Practical considerations. There are some implementation
aspects needed to bring Alg. 2 into practice. A requirement
of our solution is having estimators of the PU performance
in terms of computing time and energy consumption. In our
case, we rely on open-source approximators provided in [5],
which consider the characteristics of the incoming TB (i.e.,
size, SNR, and MCS) and the different types of PUs.

In our integration of Alg. 2 in an operational platform, there
are a few steps that need to be executed at each time-slot
t before line 4. First, the assignment decision should be set
in the platform (AAL Broker, explained in the next section).
Second, we observe the set of TBs coming from each vBS to be
processed during the current time-slot. Third, we compute the
following estimations: (i) the processing energy required by PU
j to process the TBs of vBS i at time t, denoted by et,ij ; (ii)
the analogous processing time, denoted by st,ij . Based on this,
we compute the lines 4-8 in Alg. 2. Note that the assignment
decision for the next time-slot xt+1 is computed in line 8. Thus,
at t + 1, xt+1 is communicated with no extra delay, which
enables real-time operation. Finally, we gather performance
measurements from the system in terms of throughput, bit loss,
and energy consumption.

IV. PERFORMANCE EVALUATION

We start off by evaluating our solution in different simulation
settings where the utility and cost functions are chosen to
emulate the real behavior of the system. This evaluation
methodology allows us to validate the theoretical findings
in terms of fairness regret and constraint violations.

Next, we evaluate our algorithm in a real O-RAN platform
where we can measure its performance in terms of energy
consumption and throughput. The platform comprises an O-
RAN Distributed Unit (DU) and an O-RAN O-Cloud with
two PUs: an Nvidia GPU V100 and a CPU Intel Xeon Gold
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Fig. 2: Scheme of our experimental platform consisting of 2 PUs: a
CPU and a GPU. The DUs interface with the AAL Broker, where
FairRIC runs in real-time. AAL Broker assigns the load of each
individual DU to the LPUs, which abstract the HAs.

6240R, from which 4 cores are dedicated to processing tasks.
We implement the O-RAN Acceleration Abstraction Layer
(AAL) to abstract the O-Cloud computing resources as Logical
Processing Units (LPUs). To implement the AAL, we use Intel
DPDK BBDev3 according to specifications [24]. On top of the
AAL, we implemented the AAL Broker as detailed in [5]. The
AAL Broker operates in real-time and executes our algorithm,
assigning the workload of each vBS to one LPU at each TTI.

The data generation and the channel quality of the user are
based on traffic traces collected from real BS using [9]. In
particular, the traffic traces model the data arrivals from which
the DU performs the scheduling decisions creating the TB.
Then, we add noise to the TB based on the SNR in the traces
and inject the TB into the system. The platform processes the
incoming signals using the open-access software libraries, e.g.,
Intel FlexRAN [25] in the case of the CPU. We measure the
energy consumption using the drivers of each PU, i.e., RAPL
and nvidia-smi for the CPU and GPU, respectively. Fig. 2
presents a schematic of our experimental platform.

A. Simulation Study
For the simulation study, we model the normalized utility

of vBS i and the normalized cost of PU j as:

ut,i(xt) =

J∑
j=1

ut,ij(xt) =

J∑
j=1

xt,ij(1− πt,j),

ct,j(xt) =

I∑
i=1

ct,ij(xt) =

I∑
i=1

xt,ijet,ij ,

where πt,j denotes the probability of PU j to be over its
capacity at time slot t, and et,ij denotes the energy required
to process the load of vBS i using the PU j at time slot t. Let
bt,j be the cost constraint (energy budget) for PU j at time t.
To ensure the feasibility of the solution for a given bt,j in the
simulation study, we set the constraints as a ratio of the energy
demand per PU, i.e., bt,j = R

∑I
i=1 et,ij , where R ≥ 1/J . We

define two simulation scenarios based on how πt,j and et,ij
are chosen and we fix in all the cases I = 20 vBS and J = 10
PUs, and R = 0.15:

• Simulation scenario 1. The initial values of the parameters
(t = 1) are drawn randomly from uniform distributions:

3https://doc.dpdk.org/guides/prog guide/bbdev.html
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Fig. 3: Evolution of long-term fairness regret (left) and constraint
violations (right) within simulations. Mean and ±1.96 standard
deviation (shaded area) of 50 independent runs.

π1,j ∼ U [0, 0.2), e1,ij ∼ U [0, 1). Then, for the next time
slots (t > 1): et,ij = 1− et−1,ij , πt,j = 1− πt−1,j . This
setting is known as the ping-pong scenario and is consid-
ered the worst-case scenario in the OCO literature [26].

• Simulation scenario 2. We modify simulation scenario 1
to ensure vanishing fairness regret (w < 1 in Theorem 2).
For that purpose, we randomly select ⌊

√
T ⌋ time slots to

change πt,j instead of changing it at each time slot.
Fig. 3 shows the fairness regret and the time-averaged constraint
violations for 50 independent runs of 1000 time-slots, where
α = 1 and β = 0.75. The fairness regret of our algorithm
converges to a small positive constant value in simulation
scenario 1, while vanishing (negative) fairness regret is achieved
in simulation scenario 2. These results validate our theoretical
findings (see Sec. III). It is proven in [13] that ensuring
vanishing fairness regret in scenario 1 is theoretically not
possible (ω = 1). Moreover, our algorithm achieves vanishing
constraint violation in both cases, while the convergence
is faster in simulation scenario 1. When we restrict the
environment and ensure vanishing fairness regret (scenario
2), our algorithm needs to balance long-term fairness with the
constraint violations. It is evident in Fig. 3 that the constraint
violations peak when the fairness regret dips in scenario
2. Hence, our algorithm finds the balance between the two
metrics, i.e., fairness and constraint violations, and the negative
fairness regret indicates that our algorithm results in a more
fair allocation than the best static decision when we restrict
the environment (scenario 2).

B. Experimental Evaluation

Next, we evaluate the algorithm on an O-RAN-compliant
platform. Based on the energy and time estimations defined in
Sec. III, et,ij and st,ij , respectively, the expected processing
time and energy consumption of the PU j at time-slot t is
given by:

rt,j =

I∑
i=1

xt,ijst,ij ms, ct,j =

I∑
i=1

xt,ijet,ij mJ,

respectively. We design the utility and cost functions for
this real setting as proxies of the normalized throughput
and PU power peak. Specifically, the utility is a piecewise
linear function modelling that vBSs assigned to saturated
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Fig. 4: Table describing the vBS setting in the experiment (top).
Normalized throughput per vBS (bottom left) and GPU power
consumption (bottom right) as a function of the maximum power
constraint, b. FairRIC respects the long-term constraints and distributes
the throughput fairly among vBSs. Mean and ±1.96 standard deviation
(shaded area) of 10 independent runs, β = 0, α = 1.

PUs will experience reduced throughput, similar to [7]. More-
over, the higher the traffic load of a vBS, the higher the
probability of bit loss. Considering πt,j from Sec. IV-A as
πt,j = max{0, rt,j − 1} and the vBS load characteristics, the
utility of vBS i assigned to PU j is given by ut,ij(xt) =

xt,ij(1− vt,iπt,j) = xt,ij min {1, 1− vt,i(rt,j − 1)} ,

where vt,i is the ratio between the number of TBs coming
from vBS i and the total number of TBs at time-slot t. The
total utility of vBS i at time-slot t (ut,i(xt) =

∑J
j=1 ut,ij(xt))

represents the normalized throughput of vBS i, ranging in [0, 1].
In order to ensure that FairRIC respects the long-term power
constraints, we model the peak power by dividing the energy
consumption of PU with minimum processing time per PU:

pt,j =
ct,j

qt,j
∑I

i=1 st,ij
,

where qt,j is the utilization of the PU j at time-slot t

(qt,j(xt) =
∑I

i=1 ut,ij(xt)/I). We denote the maximum
power consumption of the GPU per time-step as b (W). Note
that our algorithm guarantees to satisfy this constraint on
average (see Sec. III), i.e.,

∑T
t=1 pt,j/T ≤ b.

Using the real network traces presented in Fig. 1, we build a
heterogeneous environment consisting of 9 vBSs with different
numbers of users and traffic loads, described in the Table shown
in Fig. 4 (top). The rows represent the number of users, while
the columns denote the load amplifier assigned to each user.
For instance, x8 load implies that the number of bits in each
user’s data arrival, within the traffic traces, is scaled by a factor
of 8. The scaling is performed to emulate higher load vBSs in
the future, using the current traffic patterns.

Fig. 4 (bottom) shows the normalized throughput for each
vBS (left) and the GPU power consumption (right) as a function
of the maximum power constraint and for T = 104 time-slots.
We observe that the average power constraint is always satisfied.
When b = 0, only the CPU can be used and some vBSs
inevitably suffer throughput loss due to the lack of computing

TABLE I: Average vBS throughput and GPU power consumption of
algorithms. Average over 10 independent runs (± standard deviation).

Algorithm b (W) Avg. Thr. (%) Fairness (α = 1) Avg. GPU Power (W)

FairRIC
5 99.900 -0.0090 (0.0016) 2.003 (0.122)

15 99.937 -0.0057 (0.0014) 10.256 (0.868)
∞ 99.984 -0.0014 (0.0003) 22.324 (0.219)

Oracle - 99.998 -0.0002 (0) 27.499 (0.090)
Greedy [5] - 99.990 -0.0009 (0.0003) 23.091 (0.229)
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Fig. 5: Comparison between unconstrained FairRIC and Greedy in
terms of fairness over normalized throughput as a function of the
GPU processing capacity. Mean and ±1.96 standard deviation (shaded
area) of 10 independent runs.

capacity (e.g., vBS9). As the constraint takes higher values,
the GPU utilization increases, and therefore the throughput
loss diminishes. Note that, even with FairRIC’s fair resource
allocation, the vBSs with more load inevitably have a higher
probability of throughput loss when a PU is saturated.

Next, we evaluate the fairness, aggregated throughput, and
power consumption of our algorithm against two benchmarks:

• Oracle is the optimal static vBS to PU allocation, found
by exhaustive search. The oracle can be computed as we
assume stationary traffic loads.

• Greedy is inspired by the LPU allocation algorithm in [5].
This algorithm assigns vBS to PU sequentially at each
time-slot. For each vBS, the algorithm generates the set
of feasible PUs (i.e., the ones that can process the traffic
load within the deadline based on an estimation of the
processing time). Then, from the set of feasible PUs,
the lowest energy consumption is assigned (based on an
estimation of the energy consumption of the PUs). This
benchmark tries to minimize energy consumption while
achieving maximum throughput.

Table I shows the performance of the algorithms for three
values of the power constraint: 5 W (minimal GPU usage), 15
W, ∞ (unconstrained). We observe that our algorithm satisfies
the power constraints in all the cases. Moreover, when the
constraint is set to a very tight value b = 5 W (i.e., the use
of the GPU, the fast processor, is very restricted), FairRIC
allocates the resources in a way that neither the throughput
nor the fairness drops significantly. Higher values of b allow
FairRIC to provide higher throughput and fairness.

Note that the benchmarks do not allow to set power
constraints and therefore can only be compared with the
unconstrained version of FairRIC. Oracle provides the highest
throughput and fairness but also the higher power consumption
due to the higher utilization of the PUs. However, the Oracle



solution can only be computed when the traffic loads are known
a priori. We also observe no statistical differences between
Greedy and unconstrained FairRIC. The reason is that, without
power constraints, the computing resources are enough to
process the load, resulting in normalized throughput close to
1 and consequently high fairness for all vBSs. The results in
Table I indicates that the quantization error does not affect the
performance of FairRIC.

Now, we evaluate these algorithms when the computing
resources are constrained. For that purpose, we decrease the
processing power of the GPU by a factor ξ. That is, ξ = 1
implies normal operation, while ξ = 2 doubles the processing
time. Fig. 5 shows the α-fairness of the throughput with
α = 1 for different values of GPU speed. Values of throughput
fairness lower than zero indicate throughput losses at the
vBSs. We observe that for ξ > 3, FairRIC provides higher
throughput fairness compared to the Greedy benchmark. In
other words, when the computing resources are scarce, FairRIC
fairly distributes the losses across the different vBSs.

V. LITERATURE REVIEW

Resource allocation in mobile networks. There are many
previous works addressing resource management problems
in mobile networks. For instance, some rely on analytical
functions to characterize the performance of the network (e.g.,
[27], [28]). Unfortunately, these solutions require some input
parameters that are often unknown in vRANs. Some others
propose techniques that adapt to network conditions and user
demands (e.g., [29], [30]). For instance, Bayesian learning
is used for the optimization of video analytics [29], and
Reinforcement Learning is applied for spectrum management
and wireless scheduling [30], among others. These approaches,
however, either have high computing overhead such as the ones
relying on Bayesian learning, or do not provide any guarantees
in terms of convergence or regret.

The most closely related works to this paper address
the computing resource assignment in O-RAN systems with
processor pooling [5], [6], [7]. While some of them tackle
the problem in near-RT or non-RT, the granularity of the
decision-making in these approaches may be very coarse to
adapt to the intrinsic burstiness of the traffic [5], [8]. To
alleviate this issue, the authors in [5] propose a framework
to assign the computational resources of the O-Cloud in real
time. Nevertheless, the proposed algorithm in this framework
is a greedy heuristic, which lacks performance guarantees.
Furthermore, fairness among vBSs or users is not addressed in
this work. In contrast, we propose a framework with long-
term fairness and constraint violation guarantees utilizing
OCO theory. Finally, antenna pooling is studied in [31] and
orthogonal to this work.

Online learning and fairness. Fairness is a crucial metric
in resource management, with extensive applications in cloud
computing [32], communication systems [16], and other do-
mains [33]. Recent studies have explored max-min throughput
fairness in RANs through spectrum management [34], fair
allocation of computing capacity to vRAN functions and edge
services [35], and cost-fairness in multi-tenant O-RANs [36].
However, these works often overlook the dynamic nature

of vRANs and fail to provide fairness guarantees, making
the problem theoretically challenging. Previous research has
considered slot fairness, addressing fairness independently in
each decision round [37]. Although simpler, this approach leads
to a higher price of fairness [38]. More advanced methods
aim for long-term fairness [13], or enforce fairness across
multiple time-scales [39]. There are some works that define
fairness function as a regularizer [40] or as a constraint [41].
Recent long-term fairness studies typically assume known or
non-adversarial utility functions [39], [42], or compare with
easier benchmarks [43]. Our framework, however, drops these
assumptions and extends the work of [7] by respecting long-
term constraints and allowing discrete allocations.

Producing discrete decisions within the OCO framework
is not a new idea and studied extensively by [44], [45], [46],
where the proposed algorithms used Follow-The-Perturbed-
Leader. However, none of these works considered fairness
or constraints. Constrained OCO framework utilizes penalty
functions [47], [48] or Lazy Lagrangians [14], [49]. Some other
works utilize Lyapunov optimization to meet the stochastic
constraints at each time-slot instead of considering an average
constraint [50], [51].

Our approach relies on the seminal FTRL framework
that receives increasing attention [20]. We extend FTRL to
accommodate budget constraints and ensure low computation
and memory requirements while producing discrete assignment
decisions; as deemed necessary for the considered real-time
decision problem in O-RAN.

VI. CONCLUSION

The development of computing resource assignment strate-
gies becomes crucial in O-RAN networks where several vBSs
share a common O-Cloud. We address this problem with
FairRIC, a novel resource assignment algorithm that operates in
real-time to handle the intrinsic burstiness of the traffic. FairRIC
relies on OCO theory, extending state-of-the-art approaches on
long-term fairness and constrained optimization, and allowing
discrete decisions. Our method offers an intrinsic closed-form
iteration streamlining the computation process and allowing
real-time operation. Moreover, our algorithm has guarantees in
terms of fairness among the vBSs while adhering to long-term
constraints in terms of energy over the entire operation horizon.
We validate our approach via simulations, and experimentally
in an O-RAN platform.
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APPENDIX

A. Proof of Theorem 1

Proof. Define the regret on discrete decisions Rx
T

.
=∑T

t=1 Ψt(θt,x
⋆) − Ψt(θt,xt). Dual variables {θ}1:T are

calculated using the continuous variables {x̂}1:T and does



not include randomization over decisions {x}1:T . Therefore,
we can write

E[RT,α] = E

[
Fα

(
1

T

T∑
t=1

ut(x
⋆)

)
− Fα

(
1

T

T∑
t=1

ut(xt)

)]

≤ E[Rx
T ]

T
+

R̂θ
T

T
+ΣT .

For linear utility functions, it is sufficient to show that

E[Rx
T ] =

T∑
t=1

E[Ψt(θt,x
⋆)−Ψt(θt,xt)] =

T∑
t=1

E[g⊤
t (x

⋆ − xt)]

(a)
=

T∑
t=1

g⊤
t (x

⋆ − E[xt])
(b)
=

T∑
t=1

gt(x
⋆ − x̂t) = R̂x

T ,

where in (b) we used the fact that inverse transform sampling
is unbiased (E[xt] = x̂t) [52], [53]. For concave and L-
Lipschitz continuous utility functions, (a) is not true since
gt = ∇x̂t

Ψt(θt, x̂t) = θ⊤
t ∇x̂t

ut(x̂t) depends on x̂t, and
E[Rx

T ] ≤ R̂x
T+L

√
IJ/2 from [22, Theorem 1]. Bound follows

from the proof of [7, Lemma 4.2]:

R̂x
T ≤

(
2
√
2I

η
+ ηI log J

)√√√√ T∑
t=1

∥gt∥2∞.

B. Proof of Lemma 1

Proof. We use the rationale of [14, Theorem 1] as starting
point, but we have a different setting. First, we use negative
entropy as the primal regularizer, which is non-proximal and we
cannot directly apply the strategy of using Be-the-Leader [26,
Lemma 3.1] to bound the regret with respect to prescient actions.
Instead, we derive the bound by using regret bounds from [7]
(Bx

T , B
r
T ). We follow the same approach as [14, Theorem 1]

until Be-the-Leader step, and bound the regret as:

−
T∑

t=1

g⊤
t x̂t ≤ Bλ

T +

T∑
t=1

qt(λt) +

T∑
t=1

Lt(x̂t,λt)

≤ Bλ
T +

T∑
t=1

qt(λt) +

T∑
t=1

Lt(x
⋆,λt)

+
2
√
2I

η

√√√√ T∑
t=1

∥gt −W⊤
t λt∥2∞︸ ︷︷ ︸

Bx
T

= Bλ
T +Bx

T +

T∑
t=1

rt(x
⋆)− g⊤

t x
⋆ + λ⊤

t Wtx
⋆

(a)

≤ Bλ
T +Bx

T + ηI log J

√√√√ T∑
t=1

∥gt −W⊤
t λt∥2∞︸ ︷︷ ︸

Br
T

−
T∑

t=1

g⊤
t x

⋆,

where (a) follows from Wtx
⋆ = ft(x

⋆) ≤ 0,∀t ≤ T , and
Bx

T , B
r
T follows from [7, Lemma 4.2]. Rearranging, we obtain

the regret bound. In a similar fashion, we bound the constraint
violations as:

λ⊤
T∑

t=1

Wtx̂t − q1:T−1(λ) ≤ Bλ
T +

T∑
t=1

qt(λt) + g⊤
t x̂t

+

T∑
t=1

rt(x̂t)− g⊤
t x̂t + λ⊤

t Wtx̂t − qt(λt)︸ ︷︷ ︸
Lt(x̂t,λt)

≤ Bλ
T +

T∑
t=1

qt(λt) + g⊤
t x̂t + Lt(x

⋆,λt) +Bx
T

≤ Bλ
T +Bx

T +

T∑
t=1

rt(x
⋆) + λ⊤

t Wtx
⋆ −

T∑
t=1

g⊤
t (x

⋆ − x̂t)︸ ︷︷ ︸
L̂x

T

Using the fact that Wtx
⋆ = ft(x

⋆) ≤ 0,∀t ≤ T , and L̂x
T ≥

R̂x
T from [20], we obtain the constraint bound.

C. Proof of Theorem 2
Proof. Regret is bounded same as Theorem 1, and E[VT ] is
bounded using the proof of Lemma 1 as:

E[λ⊤
T∑

t=1

Wtxt −
σ1:T−1

2
∥λ∥22] ≤ E[Bx

T +Br
T +Bλ

T − Lx
T ],

λ⊤
T∑

t=1

WtE[xt]−
σ1:T−1

2
∥λ∥22 ≤ Bx

T +Br
T +Bλ

T − E[Lx
T ],

λ⊤
T∑

t=1

Wtx̂t −
σ1:T−1

2
∥λ∥22 ≤ Bx

T +Br
T +Bλ

T − L̂x
T .

D. Proof of Theorem 3
Proof. From the closed-form solution for λ and ∥·∥∞ ≤ ∥·∥2,
and triangle inequality,

∥λT+1∥∞ =

∣∣∣∣∣
∣∣∣∣∣
[∑T

t=1 Wtx̂t

σ1:t

]
+

∣∣∣∣∣
∣∣∣∣∣
∞

≤ V̂T

σ1:T
, (10)√√√√ T∑

t=1

∥gt −Wtλt∥2∞ ≤ (ǧ + W̌ λ̌T )
√
T , (11)

where ǧ = max{∥gt∥∞}, W̌ = max{∥Wt∥∞} are constants,
and λ̌T = max{∥λt∥∞} Expanding V̂T in (10) we have:

∥λT+1∥∞ ≤

√
2σ1:T−1(BT − R̂xT

T )

σ1:T
≤

√
2(BT − R̂xT

T )

σ1:T

(12)

Following [14, Theorem 2], we can bound
1

σ1:T
= O(T γ), γ = min {−β,−1/2} ≤ 0, (13)

Bλ
T = O(T ζ), ζ = min {1− β, 1/2} ≤ 1. (14)

Finally, inserting these values into BT in (12), we have k =
(1 + γ)/2 and BT = O(T 1+ γ

2 ) and V̂T = O(T
1−γ
2 ).
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