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Abstract—The high energy footprint of 5G base stations, par-
ticularly the radio units (RUs), poses a significant environmental
and economic challenge. We introduce Kairos, a novel approach
to maximize the energy-saving potential of O-RAN’s Advanced
Sleep Modes (ASMs). Unlike state-of-the-art solutions, which
often rely on complex ASM selection algorithms unsuitable for
time-constrained base stations and fail to guarantee stringent
QoS demands, Kairos offers a simple yet effective joint ASM
selection and radio scheduling policy capable of real-time opera-
tion. This policy is then optimized using a data-driven algorithm
within an xApp, which enables several key innovations: (i) a
dimensionality-invariant encoder to handle variable input sizes
(e.g., time-varying network slices), (ii) distributional critics to
accurately model QoS metrics and ensure constraint satisfaction,
and (iii) a single-actor-multiple-critic architecture to effectively
manage multiple constraints. Through experimental analysis on
a commercial RU and trace-driven simulations, we demonstrate
Kairos’s potential to achieve energy reductions ranging between
15% and 72% while meeting QoS requirements, offering a
practical solution for cost- and energy-efficient 5G networks.

Index Terms—5G, xApp, Advanced Sleep Modes, Radio Unit

I. INTRODUCTION

5G base stations (BS) consume four times more energy than
their 4G counterparts [1]. This poses a serious environmental
concern: with over 3.5 million 5G BSs deployed worldwide
(and growing), the resulting carbon emissions caused by 5G
BSs alone are estimated to exceed 100 megatons per year [2].
This also presents a financial challenge for mobile operators,
potentially adding EUR 26.5 billion per year1 to electricity
bills, exacerbating already high operating expenses. Addition-
ally, the higher power demand may necessitate retrofitting
30% of power supply systems, incurring an additional cost of
approximately USD 2,800 per site in capital expenditure [4].

We make two key observations. First, this four-fold increase
in power consumption is primarily attributed to the increased
bandwidth, transmission power, and number of antennas that
can be employed in 5G macro-cells. The radio unit (RU)
accounts for 90% of this energy bill [1], which highlights a
critical need to curb the RU’s energy drain in 5G macro-cells.

Second, while very few BSs experience zero traffic over
longer time scales (tens of minutes), at shorter time resolutions
(milliseconds), most cells are idle most of the time [5].
We confirm this in §II through our own measurements on
cells from various operators in Madrid, Spain, in 2024. For
illustration, Fig. 1 shows activity patterns for a few of those
cells. In general, as we show in §II, the cumulative idle time
amounts to over 50% of the total time in the median cell.

These two observations reveal substantial energy-saving
potential through discontinuous transmissions (DTX), a fast

1Assuming 4.3 kW per 5G BS [1] and EUR 0.2008 per kWh of electricity
costs for non-households in Europe [3].
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Fig. 1. Short and bursty energy-saving opportunities in production cells.
Red/black slots are 1-ms periods with/without transmissions.

switching mechanism that enables deactivating the RU’s power
amplifier—the most energy-consuming component, as we also
show in §II—during these short, bursty idle periods [6]. Even
a modest 1% reduction in RU consumption could potentially
save over 1,200 GWh annually.

More recently, the O-RAN Alliance introduced specifica-
tions for controlling Advanced Sleep Modes (ASMs) in the
RU, offering deeper sleep levels and greater energy sav-
ings through progressive deactivation of RU components [7].
However, deeper sleep levels come at the cost of increased
switching overhead. Several research works have since pro-
posed strategies to optimize the use of ASMs, such as [8],
[9]. However, these works often make limiting assumptions
about traffic models, neglect the computational complexity
and real-time requirements of their solutions [10], and fail
to provide hard QoS guarantees. A comprehensive review of
related literature is presented in §VI.

To address these issues, we propose a different approach,
which we call Kairos. Instead of relying on complex ASM con-
trol algorithms within the BS, which has real-time constraints,
we advocate for a simple joint ASM selection/radio scheduling
policy that is dynamically optimized in near-real-time based
on context. This optimization is performed within an xApp
in the O-RAN Near-Real-Time RAN Intelligent Controller
(Near-RT RIC), with more relaxed timing requirements [11].
This allows us to design a data-driven algorithm with key
innovations: (i) support for a varying number of network slices
over time, with diverse/changing QoS requirements, and (ii)
inciting joint ASM/radio policies that can minimize energy
usage while providing hard QoS guarantees.

Kairos’s xApp-based approach has two key advantages:
(i) it is suitable for deployment in systems with real-world
constraints, as the computationally intensive optimization is
offloaded to the Near-RT RIC, which has more relaxed timing
constraints than the BS; and (ii) because the intelligence
resides in an xApp and is observation-driven, Kairos can
operate with various ASM selection strategies, including those
proposed in [8], [9] or others reviewed in §VI. However,
our results show that, when using Kairos, complex real-time
ASM selection strategies do not yield substantial gains over
simpler ones, such as the one we introduced in §III-A. This



is because, as our measurements on a commercial RU in §II
demonstrate, consolidating radio resources into as few time
slots as possible is sufficient for maximizing energy efficiency.
Moreover, to provide hard QoS guarantees, the ASM strategy
must be directly guided by the configured radio scheduling
policy, an aspect that is neglected in the literature.

II. BACKGROUND & ANALYSIS

First, we provide background on 5G and O-RAN (§II-A),
empirically study energy-saving opportunities in real-world
networks (§II-B), analyze the power consumption profile of
massive MIMO 5G radio units (§II-C), and detail relevant
aspects of Advanced Sleep Modes and O-RAN control (§II-D).

A. A primer on 5G New Radio (NR) and O-RAN
NR defines the PHY/MAC procedures in 5G. We focus on

sub-6GHz bands, which offer up to 100 MHz per band and
flexible numerology µ = {0, 1, 2}. The fundamental spectrum
unit is the resource block (RB), consisting of 12 subcarriers
spaced at 15 · 2µ KHz. Time is divided into 1-ms subframes,
each containing 2µ slots carrying, typically, 14 OFDM sym-
bols of duration 66.7 · 2−µ µs. In each Transmission Time
Interval (TTI), often one slot, a scheduler assigns one transport
block (TB) for each active User Equipment (UE). The TB size
depends on the numerology, the buffered data, a RB/symbol
scheduling policy, and the modulation and coding scheme
(MCS), which depends on the signal-to-noise ratio (SNR).

To break vendor lock-in and enhance flexibility, the O-
RAN Alliance has proposed a novel, open, and interoperable
architecture for cellular networks with standardized inter-
faces [11]. Specifically, O-RAN establishes a 7-2x functional
split between a Distributed Unit (DU) [11], which performs
higher PHY functions (e.g., forward error correction), a Radio
Unit (RU), in charge of lower PHY functions (e.g., FFT).

The O-RU and the O-DU are connected via the Fronthaul
(FH) interface. FH traffic is logically divided into four planes:
(i) the Control Plane (C-Plane), which transports real-time
slot configuration control messages, (ii) the User Plane (U-
Plane), which transports IQ samples data, (iii) the Synchro-
nization Plane (S-Plane), which transport timing information
messages and (iv) the Management Plane (M-Plane), which
carries non-real-time management operation messages. C/U-
Plane messages are exchanged using the eCPRI protocol which
identifies them using the eCPRI message type field in the
eCPRI header. eCPRI messages’ payloads are structured using
sections, which are data segments that carry information for
each message type.

Finally, the Near-Real-Time RAN Intelligent Controller
(Near-RT RIC) interacts with an O-RAN-compatible DU (O-
DU) via the E2 interface, enabling the exchange of fine-
grained performance measurements and radio scheduling poli-
cies at a ∼100 ms granularity.

B. Small-timescale energy-saving opportunities
Since mobile systems are typically provisioned to handle

peak traffic demands, individual cells often operate at low av-
erage utilization levels [12]. This inherent underutilization has
motivated extensive research aimed at leveraging long-term
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Fig. 2. Share of Idle TTIs in 10-
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across different cells.

traffic variations to improve energy efficiency through cell load
consolidation and cell sleeping strategies. A comprehensive
review of related work is provided in §VI.

However, workload patterns within individual cells re-
veal substantial power-saving sleeping opportunities at shorter
timescales. To illustrate this, using Falcon [13], we collected
millisecond-resolution workload data from diverse cells oper-
ated by multiple providers in Madrid, Spain, in May 2024.
Consistent with prior research [12], the overall load is low
(median less than 2 Mb/s) but highly variable (99th percentile
around 10 Mb/s). For perspective, a 5G 100-MHz massive
MIMO macro-cell can easily reach 1 Gb/s of peak capacity.

Moreover, we classified each TTI (1 ms in this case) as
either ”Active” (carrying traffic) or ”Idle” (no traffic). Fig. 1
shows some activity patterns, revealing the bursty nature
of today’s cellular traffic and highlighting potential energy
savings through short-term sleep mechanisms. Indeed, these
short-term sleeping opportunities can amount to significant
energy savings. Fig. 2 shows the distribution of the ratio of
idle TTIs across all cells, calculated over 10-minute periods:
the median inactivity is over 50%.

However, the duration of such idle periods is highly diverse.
To illustrate this, Fig. 3 depicts their distribution across all
monitored cells. The median idle period duration is 2 TTIs
(28 OFDM symbols), but the 99th percentile reaches 8 TTIs
(112 OFDM symbols). This variability motivates the use of
diverse sleep modes that can be implemented at intervals as
short as one OFDM symbol or at longer intervals, with energy
savings adjusted based on the specific case. O-RAN refers to
these modes as Advanced Sleep Modes (ASM)—see §II-D.

C. Radio Unit power consumption
We conducted an experimental analysis on a commercial

32TRX massive MIMO RU compliant with O-RAN 7.2-x FH
specifications.2 Based on these measurements, we can model
the energy consumption of an RU as

P = P0 + PRF + PBB + PPAM (1)

where
• P0 models the power consumption of the baseline compo-

nents in the RU (fabric, Ethernet, PCIe, etc.).
• PRF models the power consumption of the analog-to-

digital/digital-to-analog converters (ADC/DAC) and the fre-
quency up/downconverters.

• PBB models the power consumption of the core digital pro-
cessor (e.g., an eFPGA) and the other low-PHY processing
components (e.g., beamforming) for each antenna chain.

• PPAM models the power consumption of the power ampli-
fier module (PAM) at each antenna chain.

2Details omitted due to Non-Disclosure Agreement with the vendor.
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Fig. 4. Empirical results of spectral efficiency (RBs transmitted per watt of
power consumed) of an O-RAN 7.2-x compliant 32TRX massive MIMO RU.

TABLE I
ADVANCED SLEEP MODES (ASM) CONSIDERED IN THIS PAPER.

Off RU HW Normalized Switching
RU mode (see §II-C) power consumption delay (µs)
Idle - 1 0
ASM 1 PAM 0.675 37
ASM 2 PAM, BB 0.55 500
ASM 3 PAM, BB, RF 0.23 5000

Our experiments suggest that P0, PRF , PBB remain rather
static, independent of the load. However, PPAM is highly
dependent on the load and its consumption follows:

PPAM = PPAM,0 · PPAM,c(r) · ηPAM · nant (2)

where PPAM,0 is a baseline power consumption that depends
on the number of antennas, ganging elements, and the maxi-
mum EIRP per antenna; PPAM,c(r) is a factor that depends
on the amount of subcarriers to be amplified, which in turn
depends on the number of RBs r carried therein; ηPAM

captures the efficiency of the amplifier to convert DC power
into signal power gain and nant is the number of radio chains
(with one amplifier per radio chain).

Fig. 4 presents experimental measurements on the RU
configured with different bandwidths. The figure depicts the
normalized spectral efficiency, measured as the number of
radio blocks (RBs) transmitted per watt of power consumed
in one symbol period. We present results for the complete
RU (P in eq. 1) and for the PAM alone (PPAM in eq. 1).
As mentioned previously, the consumption of the remaining
components is independent of the load. As expected, overall
RU consumption is dominated by the PAM. Moreover, while
the PAM’s spectral efficiency plateaus as the utilized spectrum
resources (RBs) increase, it is maximized when more band-
width is employed. This observation motivates the principle
behind the solution we propose in this paper: consolidate
data into as few symbol periods as possible, using more radio
resources per period instead.

D. 5G energy-saving features
3GPP has introduced a series of energy-saving features.

Early on, 3GPP introduced a lean carrier design [14], which
enables grouping together the BS’s broadcast signals into
periodic Synchronization Signal Blocks (SSB). The SSB pe-
riodicity can be adjusted by the operator in the range of
5 to 160 ms, to enable longer intervals for BS sleeping.
Moreover, inherited from 4G, Discontinuous Transmission
(DTX) [15] allows the transmitter to temporarily sleep when
not sending data, conserving power during the aforementioned
small timescale idle periods.

Advanced Sleep Modes (ASMs) enable progressively deeper
sleep levels by deactivating more RU components, with the
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Fig. 5. Using O-RAN Section Type 4 messages to implement “Go-to-sleep”
and “wake-up” commands. Example for ASM 2 and numerology µ = 1.

trade-off of increased wake-up/sleep switching delays. Based
on our analysis in §II-C and the related literature [16], we
establish the ASMs described in Table I. Our RU already
implements ASM 1 by deactivating the PAM, saving over 30%
energy consumption compared to the active (yet idle) state. It
requires one OFDM symbol period (∼37 µs with numerology
µ = 1) for switching, aligning with existing DTX literature
reporting PAM deactivation times of 30− 65 µs [17], [18].

We simulate the remaining modes (ASM 2 and ASM 3)
as follows. As shown in Table I, we assume that ASM 2
further deactivates the digital processor cores and other PHY
layer components (BB in eq. 1). Consequently, we adopt a
0.5 ms switching delay, consistent with the literature [8],
[16], [19], [20] and reported to C-state transitions in Intel
processors [21]. Moreover, we assume that ASM 3 further
deactivates RU components such as ADC/DAC and frequency
converters (RF in eq. 1), with a 5 ms switching delay based
on the literature [8], [16], [19], [20].

To asynchronously wake up or put the RU to sleep, Kairos
relies on O-RAN’s FH C-Plane specification [22]. O-RAN
enables the configuration of specific ASMs in an RU using
“Section Type 4” C-Plane messages. These C-Plane messages
convey slot-level configurations, including ASM settings, and
apply to all endpoints associated with a carrier, antenna array,
or the entire RU. Fig. 5 shows an example for numerology
µ = 1. To activate ASM 2, the DU sends the RU a “Go-to-
sleep” command with a “Section Type 4” message with the
following parameters: (i) a symbol mask indicating the symbol
period within the next slot when the RU should enter sleep
mode, (ii) “start” in the next immediate slot, (iii) duration
set to 0 (undefined), and (iv) the ASM identifier. Conversely,
to wake up the RU, the DU sends a “wake-up” message by
unmasking the previously sent “Go-to-sleep” message.

III. KAIROS DESIGN

The analysis in §II highlights the diverse range of RU
sleeping opportunities and the inherent trade-off between cell
idle times and energy savings.

An additional observation is that 5G network slices have
varying user delay requirements. For instance, while Ultra-
Reliable Low-Latency Communication (URLLC) slices de-
mand the lowest latency for critical applications, targeting
delays of less than 1 ms, enhanced Mobile Broadband (eMBB)
slices tolerate moderate delays for smooth streaming, aim-
ing for 1-10 ms, or Massive Machine-Type Communica-



O-RU

Kairos 

Controller

xApp

…

ASM 

Scheduler

ASM-aware

Radio 

Scheduler

Kairos policy configuration

Silencing 

event

Buffer states

Active state

Silenced state
ASM 

commands

Slice 1

Slice L

…

User buffers

…

Slice 1

User data

Near-RT RIC

FH 

Interface

O-DU

Slice 1

Slice L

Fig. 6. Kairos system architecture.

tion (mMTC) slices, designed for massive IoT deployments,
prioritize energy efficiency over strict latency requirements,
often accepting delays of 10 ms and above. This observation
presents an additional opportunity for energy savings: to trade
off data delay for deeper and longer sleep intervals, provided
that slice QoS requirements are met.

However, attaining such guarantees requires a radio sched-
uler at the MAC layer that is both RU-aware (to exploit
sleeping opportunities) and QoS-driven. As we discuss in
§VI, a large body of research studies schedulers with QoS
guarantees (e.g., [23]), but ignore small-timescale RU energy-
saving opportunities. Some recent work optimizes ASMs
for this purpose, but they do not provide QoS guarantees
(e.g., [16]). More importantly, very few of these works are
actually practical for real-world base stations due to the tight
computing constraints in the DU [10].

To address these challenges, we propose a novel approach
called Kairos, which, unlike prior work, leverages the O-RAN-
enabled interplay between real-time MAC-layer procedures
(§III-A) and near-real-time radio-policing xApps (§III-B). This
two-tier O-RAN-compliant framework is easy to implement
and effectively exploits ASMs to save energy while guaran-
teeing hard QoS requirements. As depicted in Fig. 6, Kairos
comprises three components: (i) the ASM-aware radio sched-
uler and (ii) the ASM scheduler, operating in real-time within
the DU, and (iii) the Kairos controller, operating in near-real
time within the Near-RT RIC, which are presented next.

A. Real-time DU operation: Scheduling and ASM selection

1) ASM-Aware Radio Scheduler: Our goal is to design a
minimally intrusive radio scheduling policy that preserves the
operator’s intended scheduling logic and is lightweight enough
to avoid violating MAC layer computing constraints, while
aiding in extending RU sleep cycles within predefined QoS
requirements. To this end, the Kairos policy establishes two
states that a legacy MAC-layer scheduler must abide by:
• Active: The radio scheduler follows its own logic to allocate

radio resources to users. However, the aggregated user data
must be consolidated into as few OFDM symbols (time
resources) as possible, maximizing the amount of RBs
allocated per symbol period (spectrum resources). When the
data buffer is empty, a silencing event is triggered.

• Silenced: The radio scheduler is not allowed to allocate
radio resources, and downlink data is buffered. It also tracks
the waiting time or “age” of the oldest user data burst in
each slice, computed by the buffer states module (Fig. 6). If
any burst’s age exceeds the Kairos policy configuration d,
then an activating event is triggered. More formally, let L
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be the set of network slices. We define B(l)
t as the set of user

data bursts from slice l ∈ L waiting in the downlink RLC
buffers at time t. Let dt be the Kairos policy configuration
at time t. Thus, an activating event is triggered whenever
age(b) > dt,∀b ∈ B(l)

t ,∀l ∈ L.
Note that downlink transmissions shall resume in the symbol
period immediately following an activating event, at which
time all BS components should be awake. As shown in Fig. 7
for a toy example with a policy equal to d = 6 OFDM
symbols, delaying small traffic bursts helps consolidating radio
blocks into fewer OFDM symbols, which improves energy
efficiency (see Fig. 4).

2) ASM Scheduler: The ASM scheduler generates ASM C-
Plane commands based on some logic. Prior work has pro-
posed somewhat complex ASM control algorithms (e.g., [16]).
However, these approaches often overlook practical issues
concerning computing and real-time constraints. Our goal is to
devise a simple solution, suitable for real-time BS operation,
that leverages the aforementioned policy to fully exploit the
potential of ASMs for downlink transmissions.

When the ASM-aware radio scheduler triggers a silencing
event, it notifies the ASM scheduler (Fig. 6). This component
then selects an ASM based solely on the Kairos policy con-
figuration. We propose a simple method: to select the deepest
ASM such that the total latency of sleeping and waking up
(see Table I) is lower than the Kairos policy configuration. In
other words, the minimum duration of the sleep mode should
fit within the silenced interval provided by the Kairos policy.
For instance, in a scenario with a Kairos policy configuration
of d = 3 ms, the selected sleep mode would be ASM 2. To
configure the selected ASM in the RU, we use the O-RAN
FH interface, as explained in §II-D. Note that the RU must
be awake during the symbol period immediately following an
activation event triggered by the radio scheduler. Therefore, the
ASM scheduler must notify the RU to wake up in advance,
with the lead time depending on the specific sleep mode.

Fig. 8 illustrates the operation of the Kairos policy, where
the x-axis represents time resources (symbol periods and
slots), and the y-axis depicts radio resources (RBs). Unused
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RBs in the fifth symbol trigger a “Silencing” event in the
radio scheduler, leading to a “Go-to-sleep” command in the
ASM scheduler. Since the Kairos policy is configured with
d = 1 ms (2 slots), ASM 2 is selected because it is the deepest
mode with a total switching delay less than d (see Table I).
Seven symbol periods later, new data arrives while the RU is
asleep. After 2 slots, the age of this data burst shall meet the
policy configuration, which should cause the radio scheduler to
trigger an “Activating” event. Therefore, a “wake-up” message
is scheduled one slot before the “Activating” event, aligning
with ASM 2’s one-slot switching delay.

3) Analysis: In this way, the Kairos policy enables selecting
a Pareto-optimal operating point tailored to the requirements of
a given network slice (policy optimization is addressed later).
Fig. 9 illustrates the trade-off between RU power savings
(y-axis) and extra delay incurred (x-axis) for various Kairos
policy configurations and load levels. We adopt a trace-driven
approach, using the data from real cells that we presented
in §II, to emulate load on the same O-RAN 7.2-x compliant
32TRX massive MIMO RU employed in §II-C, configured
to use 50 MHz of bandwidth and numerology µ = 1 (see
§II-A). We define “1x” load as the load patterns observed in
our measurements. To ensure our analysis remains relevant for
potential future scenarios with higher cell loads, we generate
these higher loads by virtually compressing time in our traces
by a factor indicated in the color legend (“2x”, “3x”, and so
on). This method allows us to analyze diverse load levels while
preserving the bursty nature of real-world traffic patterns.

The results offer two key insights. First, small policy set-
tings that induce minimal delay increases (0.25-1 ms) enable
RU power savings of 30% (under today’s typical loads, i.e,.
“1x”) to 10% (under loads four times higher than the median
cell load today, i.e,. “4x”). Second, if QoS requirements were
more relaxed, permitting 10-40 ms of additional user delay,
the Kairos policy could achieve even greater savings, ranging
from 70% (under “1x” loads) to 35% (under higher loads).

B. Near-RT RIC xApp: Kairos controller

The Kairos Controller is essentially an O-RAN xApp
running at the Near-RT RIC that dynamically computes the
policy configuration d (buffering delay threshold) over time.
As shown in [24], different services (hence, slices) show
different temporal load patterns even if they belong to the same
category. Hence, it is of paramount importance to dynamically
adjust the policy configuration, considering the behavior of
all the slices, in order to harness the maximum possible
energy savings while guaranteeing QoS requirements. This is a
challenging task as the user’s experienced delay does not only

depend on the Kairos policy but also on the traffic profile that
the BS has to handle (i.e., traffic load and type of other users,
other network slices, etc). We address this in detail in §IV.

IV. KAIROS CONTROLLER

Next, we first formally describe the policy control problem
(§IV-A) and then propose a solution (§IV-B).

A. Problem formulation
As explained above, the Kairos controller is responsible for

adjusting the Kairos policy configuration used by the real-time
modules (ASM-aware radio scheduler and ASM scheduler)
based on changes in the traffic demands and different QoS
requirements across slices. Following the O-RAN architecture,
the Kairos controller operates in the Near-RT RIC, i.e., with a
time granularity of ∼100 ms. Hence, we define the time steps
denoted by t = {0, 1, . . .} based on this time granularity.

We let dt ∈ D denote the Kairos policy configuration at time
step t. We do not allow different policies for different slices
for two reasons: (i) learning a separate policy per slice from
data would exponentially increase the time and data required
for convergence to a good model; and (ii) although different
slices may have different user delay requirements, the physical
RU is shared. Thus, if the policy for one slice triggers the
scheduler into an “Active” state, there is no energy-saving
benefit from deferring transmissions on other slices, as the
RU would already be active.

Furthermore, we consider a BS with a set L of Lmax network
slices. We do not make any assumption on the distribution of
users across slices. Given that the number of active slices in
the network can change over time, we denote by Lt ⊆ L the
set of active slices at time t, whose cardinality is |Lt| = Lt.
The target requirement of slice l ∈ L is denoted by ∆(l).

We now let I(l)
t describe the set of data bursts generated by

the users in slice l ∈ L during the time step t. Each data burst
I ∈ I(l)

t is defined by its size (in bits) and the generation time.
We characterize the user data bursts using the distribution of
their inter-arrival time (IAT) and size. Specifically, for a given
set T ∈ [0, 1]N of N quantiles, we define ζ

(l)
t = ΦIAT(I(l)

t , T )
as the vector of quantile values of the IAT distribution.
Similarly, ξ(l)t = Φsize(I(l)

t , T ) denotes the vector of quantile
values of the burst size distribution. Then, we define the
context of slice l at time t as s

(l)
t := (ζ

(l)
t , ξ

(l)
t ). Now, we

can define the joint context of the BS by st = {s(l)t }l∈Lt ∈ S.
We now define the energy consumption of the system as

E(st, dt). Since all slices operate over the same RU, the
consumed energy is a global metric. We define the QoS metric
per slice as δl(st, dt). For example, this metric can be related
to the delay experienced by users. Finally, we define the
function π : S 7→ D that maps joint contexts to Kairos
policy configurations. Consequently, our objective is to solve
the following contextual bandit problem:

Problem 1:

argmin
π

T∑
t=1

E(st, π(st))

s.t. δ(l)(st, π(st)) < ∆(l), ∀l ∈ Lt, t = 1, . . . , T.



Problem 1 aims to minimize the average energy consump-
tion of the RU while satisfying the hard QoS constraints of
every slice at each time step.

We would like to emphasize that the problem in (1) is
challenging due to several factors. Both the energy E(·) and
the QoS per slice δ(l)(·) are complex functions that depend not
only on st and π(·), but also on other system parameters (e.g.,
bandwidth). Intuitively, higher values of dt can reduce power
consumption by enabling longer silent periods. However, the
value of the QoS metric δ(l)(·) is complex to devise in
advance as it depends on the traffic and buffer states of all
other slices. Moreover, these metrics can exhibit randomness
due to unknown and uncontrollable environmental factors,
which must be considered to satisfy the hard constraints.
Furthermore, the number of active slices can vary over time,
increasing the problem’s complexity and precluding the use
of standard machine learning approaches (with fixed input
size and number of constraints). We next overcome these
challenges with a novel learning framework.

B. A novel ML framework for ASM control

Our solution is designed to overcome the next challenges:
• Variable input size: The size of the context st may change

over time due to the varying number of active slices.
Hence, we propose a dimensionality-invariant encoder
that projects the context into a fixed dimensional space.

• Hard constraints with uncertain QoS: Problem (1) im-
poses hard constraints that are difficult to satisfy, as
QoS measurements in the network δ(l)(·) can exhibit
randomness due to unknown and uncontrollable factors.
To address this, we use distributional critics to capture
not only the mean value of the function δ(l)(·) but
also its distribution. Thus, by examining the tail of the
distribution, we can ensure constraint satisfaction with
some pre-determined probability.

• Variable number of constraints: The problem involves
a potentially large and variable number of constraints.
To address this, we propose an ML architecture with
one actor (to select dt) and multiple distributional critics
(one per constraint). This model allows us to compute a
joint cost function and backpropagate the loss through all
active critics (based on the number of active slices), with
the goal of learning the optimal actor function.

In the following, we detail each component of our solution.
1) Dimensionality-invariant encoder: As mentioned previ-

ously, the number of active slices Lt can be potentially large
and vary over time. A naive approach to inputting st into
the machine learning framework would be to concatenate s

(l)
t

∀l ∈ Lt and then use a single neural network (NN) with
the appropriate input size. However, this requires a separate
NN for each possible combination of active slices, totalling∑

i

(
Lmax
i

)
encoders, as the input is not permutation invariant.

In other words, the traffic of each slice l is associated with a
specific target QoS ∆(l).

Instead, we propose a much simpler, scalable, and effective
solution inspired by relational networks [25] and graph neural
networks [26]. We project the context of each slice into a

higher-dimensional space and then combine the projections of
all slices using an aggregator function. While summation is a
common choice for aggregation in the literature, it is permuta-
tion invariant. To differentiate between contexts corresponding
to different slices, we incorporate the slice identifier into the
projection function. Thus, the encoded context representation
with a fixed number of dimensions is given by:

s̃t =
∑
l∈Lt

g(s
(l)
t , l|ϕ), (3)

where g(·|ϕ) is the projection function with parameters ϕ.
2) Distributional critics: The main idea behind our distri-

butional critics is to capture the distribution (i.e., the value of
a set of quantiles) of the target function. This enables us to
precisely identify the tail of the distribution and thus satisfy
constraints with certain probability.

For a given random variable X , the value of its quantile
function is defined as qτ = F−1

X (τ), where τ ∈ [0, 1] is the
quantile and FX(x) is the cumulative distribution function.
We employ the quantile regression loss, an asymmetric convex
function that penalizes underestimation error with weight 1−τ
and overestimation error with weight τ :

J τ (q̂τ ) := Ex∼X [ρτ (x− q̂τ )] ,where (4)
ρτ (u) := u · (τ − δ{u<0}) ∀u ∈ R, (5)

where q̂τ is the estimated value of the quantile function, and
δ{z} is an indicator function that takes the value 1 when z
holds and 0 otherwise.

For each critic, we approximate N quantile values
qτ1 , . . . , qτN by training the critic using gradient decent to
minimize the following objective:

N∑
i=1

J τi(q̂τi). (6)

Since the loss function defined above is not smooth at u =
0, the performance of function approximators (e.g., NNs) may
not be optimal. To address this, we use the quantile Huber
loss [27]. This loss function, instead, presents a squared shape
in the interval [−κ, κ], and reverts to the standard quantile loss
outside this interval:

Jκ(u) :=

{
1
2u

2 if |u| ≤ κ

κ(|u| − 1
2κ) otherwise.

(7)

The asymmetric version of the Huber loss is given by:

ρκτ (u) := |τ − δ{u<0}|
Jκ(u)

κ
. (8)

By substituting ρκτ (u) into eq (4), we obtain the quantile Huber
loss. Note that as κ → 0, the quantile Huber loss reverts to
the quantile regression loss.

3) Framework architecture and learning procedure: To
handle a large and variable number of constraints in our
problem, we use an architecture with one actor and Lmax + 1
distributional critics [28].

The actor function π(s̃|η), parameterized by η, can take
continuous values as the Kairos policy is continuous. This type



of actor is commonly referred to as a deterministic actor [29].
The distributional critics are denoted by C(l)(s̃, d|θ(l)), where
θ(l) represents the parameters of critic l. We use the index
l = 0 for the critic that approximates the objective function
(energy consumption in (1)) and l = 1, . . . , Lmax for the critics
that approximate the constraint of slice l, i.e., δ(l)(·).

We define an aggregate cost signal to capture the informa-
tion about all constraints provided by the critics:

Cagg
t (s̃t, dt, | θ) := (9)

C̄(0)(s̃t, dt |θ(0))+
∑
l∈Lt

λmax
(
γα(C(l)(s̃t, dt |θ(l)))−∆(l),0

)
,

where γα(X) is the the quantile function value of distribution
X at quantile α, λ is the penalty weight for the constraints,
θ = {θ(0), . . . , θ(Lmax)} is the joint set of parameters of the
Lmax +1 critics, and C̄(l)(·) is the mean of the distribution of
critic l.

In detail, the first term in eq. (9) represents the mean of the
objective function (energy) that we aim to minimize, while the
second term aggregates the penalty incurred by the constraint
violations. When a constraint is satisfied, the value inside the
max() function is negative and the penalty is zero. Importantly,
the use of the quantile function in the aggregated cost function
ensures that the tail of the distribution of the constraints (as
α → 1) meets the constraints, boosting the robustness of
our solution in terms of constraint satisfaction. While this
formulation focuses on QoS metrics that should be below a
maximum value (e.g., delay), eq. (9) can be easily adapted
for QoS metrics that have a minimum target (e.g., throughput)
by selecting values of α close to zero and reversing the sign
inside the maximum operator.

To train the actor, we first define its objective function as

R(π) = Es̃∼β [C
agg(s̃, π(s̃ | η) | θ)] (10)

where β(s̃) is the stationary distribution of the projected con-
texts. Note that in a contextual bandit problem, the distribution
of the contexts is not conditioned by the actor function.

Then, we derive the actor update by applying the chain rule
to the performance objective defined in eq. (10) with respect
to the actor parameters [29]:

∇ηR(π) ≈ Es̃∼β

[
∇aC

agg(s̃, d | θ) |d=π(s̃|η) ∇ηπ(s̃ | η)
]
.

(11)
For a practical implementation of the algorithm, we also

consider a replay buffer D to store samples of experience from
each time step, as in [30]. Gradients are then computed using
mini-batches of B samples randomly drawn from the replay
buffer. Empirically, we observed that the distributional crit-
ics achieve better performance when approximating multiple
quantiles rather than just α. Therefore, we define T as the set
of quantiles approximated by the critics, where α ∈ T . At
each time step t, we add noise Nt to the output of the actor
to promote exploration during training [31]. Fig. 10 illustrates
all the components of the Kairos controller and Algorithm 1
presents its training procedure.

In this way, Kairos is purposely designed to maximize en-
ergy efficiency, consolidating radio resources in as few OFDM
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Fig. 10. Kairos controller comprising a dimensionality-invariant encoder, a
deterministic actor, L+ 1 critics, and an aggregation function (eq. (9)).

Algorithm 1 Kairos controller training
Input: α, κ, B, T
Initialize: Parameters η, θ; reply buffer D = ∅;
Exploration noise N ;
1: for t = 1, . . . , T do
2: Observe the context of all active slices st
3: Compute s̃t using eq. (3)
4: Compute the Kairos policy configuration dt = π(s̃t, | η) +Nt

5: Apply the Kairos policy configuration during the time step t
6: At the end to step t, observe the energy Et

7: Observe the QoS per slice δt = {δ(l)t }l∈Lt

8: Store in D the experience sample ⟨s̃t, dt, Et, δt⟩
9: Sample a random minibatch of B samples ⟨s̃i, di, Ei, δi⟩

10: Update the critic 0 (energy) by minimizing the loss
1
B

∑
i

∑
τ∈T ρκτ (Ei − γτ (C(0)(s̃i, di|θ(0))))

11: for l ∈ Lt do
12: Update the critic l by minimizing the loss

1
B

∑
i

∑
τ∈T ρκτ (δ

(l)
i − γτ (C(l)(s̃i, di|θ(l))))

13: end for
14: Update the actor with the sampled policy gradient

1
B

∑
i∇d Cagg(s̃i, d, |θ)|d=π(s̃i|η)∇ηπ(s̃i|η)

15: end for

symbols as possible, within a deterministic delay bound. This
is in contrast with the literature’s ASM-only strategies, which
are unable to provide hard QoS guarantees.

V. PERFORMANCE EVALUATION

To evaluate Kairos, we utilize the commercial RU and the
emulator of real-world traces introduced in §II. Using this
testbed, we implement Kairos as described in §III and §IV,
and evaluate its performance in terms of convergence (§V-A),
in comparison with alternative radio and ASM scheduling so-
lutions (§V-B), and its performance in dynamic environments
with time-varying network slices (§V-C).

Moreover, Kairos is configured with α = 0.995, a reply
buffer D of 104 samples, and batch size B = 128. The training
exploration noise N follows an Ornstein-Uhlenbeck process
with parameters θnoise = 0.15 and σnoise = 0.15 [31]. Finally,
we consider a decision time step of 200 ms.

A. Convergence

To study the convergence of Kairos, we test the traces
from §II under various load levels, starting without prior
training. We repeat the experiment for different maximum UE
delay QoS requirements. Fig. 11 depicts the evolution over
time of the mean user delay (top) and normalized RU power
consumption3 (bottom) for each scenario.

3Power consumption figures are normalized to respect the Non-Disclosure
Agreement with equipment vendor.
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Fig. 11. Kairos convergence. The dashed lines represent the QoS requirement.
The grey lines represent the performance of an ASM-unaware baseline.

Kairos consistently meets the QoS target after approxi-
mately 150 seconds of training (750 time steps). To this end,
Kairos induces higher RU power consumption for stricter QoS
requirements. For example, under a “4x” load, the mean power
consumption is 0.39 when ∆ = 64 ms, but increases to 0.85
(over twofold) when ∆ = 2 ms. This is expected, as stricter
QoS targets require less spectrally efficient allocations as those
discussed in §II-C. However, our approach achieves power
savings that range between 72% (“1x” load and ∆ = 64 ms)
and 15% (“4x” load and ∆ = 2 ms) compared to an ASM-
unaware baseline (depicted in grey).

We observe that user delay, our measure of QoS per-
formance, more closely approaches its target as the target
becomes less strict. This is because the bursty traffic behavior
of our traces smoothens out with higher Kairos policy settings,
as more data bursts are buffered. This behavior increases traffic
predictability and allows Kairos to operate more aggressively,
saving energy while still meeting the QoS target. Conversely,
tighter QoS targets limit the radio scheduler’s ability to buffer
and smooth out data bursts, requiring a more conservative
operation to ensure QoS guarantees are met.

B. Comparison
As we show in §VI, there exists recent work on ASM con-

trol. However, they are unable to provide hard QoS guarantees,
and most cannot operate in real time. Hence, we next compare
Kairos with different benchmarks that can guarantee QoS.

1) ASM scheduler: We first evaluate Kairos’s ASM sched-
uler against an oracle, both operated by Kairos controller.
This oracle ASM scheduler is an idealized approach with
perfect foresight of future data burst arrivals, allowing it to
make the optimal ASM schedule. Fig. 12 depicts the power
consumption achieved by both approaches for a “4x” load
scenario (other load levels yield similar results). Notably, the
figure demonstrates that Kairos, a simple strategy suitable for
real-time operation, performs comparably to the oracle when
guided by a near-real-time policy. This contrasts sharply with
related, more complex solutions [8], [16], [32], which are dif-
ficult to implement in real systems due to their computational
complexity and the tight computing constraints of DUs.

2) Kairos controller: We compare Kairos controller against
two alternative ML architectures that solve our problem:
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Fig. 12. Kairos ASM scheduler vs an Oracle solution for “4x” load.
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Fig. 13. Comparison between different xApp ML solutions. Load = “1x”.

• NCB (Neural Contextual Bandit) comprises an actor-critic
NN architecture [31] modified to fit our problem formulation
(see [28]). We define a single utility function where the
constraints are Lagrangian-like penalty terms.

• MC-NCB (Multi Critic-NCB) extends NCB with one critic
per constraint. Each (non-distributional) critic approximates
the constraint function using MSE loss. The actor is updated,
and the output of all critics is aggregated similarly to eq. (9).
Fig. 13 depicts the share of data bursts violating their

delay target (left plot) and normalized RU power consumption
(right plot) for different delay targets (x-axis) and number
of slices (2, 4, and 8, respectively), each following the “1x”
load pattern. As expected, RU power consumption decreases
with relaxed QoS requirements and a lower number of slices
(i.e., lower aggregated load). However, while RU power
consumption is similar across all three approaches, Kairos
significantly outperforms the other two benchmarks in terms
of QoS violation rates, achieving nearly negligible violations.
Notably, QoS violations are higher with fewer slices (lower
aggregated load). This occurs because increasing the load
smooths the traffic burstiness, making it more predictable and
creating a friendlier environment for the controllers.

C. Dynamic environments

We conclude by evaluating Kairos and the two benchmarks
in a more dynamic and heterogeneous setup, emulating a
scenario with five network slices (each with distinct QoS
requirements of 16, 8, 4, 2, and 1 ms) handling “1x” load
patterns and joining the system every 30 seconds. All ML
models are trained identically. Fig. 14 shows the burst delay
performance (top), excess delay relative to QoS targets (mid-
dle), and normalized power consumption (bottom) over time.

All ML models achieve comparable power savings com-
pared to the baseline, with diminishing returns as the number
of slices and aggregate load increase, and QoS requirements
become stricter (1 ms for slice 5). However, only Kairos
consistently maintains negligible QoS violations across all sys-
tem states. In contrast, NCB and MC-NCB exhibit significant
violations, reaching 19.7% and 51% at the 99th percentile, re-
spectively. These violations are particularly pronounced during
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Fig. 14. 5 slices with QoS requirements d = {16, 8, 4, 2, 1} ms, respectively,
joining the system every 30 seconds. The dashed line represents the most
stringent QoS requirement. The grey lines represent the performance of an
ASM-unaware baseline.

state transitions as new slices join, whereas Kairos seamlessly
adapts to new slices without incurring additional delays.

VI. RELATED WORK

The concept of cell sleeping for energy saving has been
extensively explored in the literature [33]. For instance, the
authors in [34] address the joint problem of cell clustering
and BS sleeping, while [35] proposes a joint strategy for cell
sleeping and interference coordination. These works exploit
medium- to long-term traffic fluctuations to consolidate load
into fewer active cells through coordination.

However, as demonstrated in this and other works, small-
timescale cell sleeping opportunities exist to save energy
in individual cells without requiring cell coordination. As
explained in §II, Discontinuous Transmissions (DTX) [15]
allow the transmitter to deactivate hardware components (e.g.,
power amplifier in the RU) during idle periods with minimal
overhead, conserving power. DTX has also been explored in
the literature; for example, [36] derives a hysteresis-based
sleeping strategy considering the maximum allowable delay.

While ASMs [22] offer the potential for greater energy
savings than DTX alone, they may also increase user delay
due to transmissions potentially being deferred until the BS
is fully operational. Several studies have proposed strategies
to optimize ASM usage [8], [9], [16], [19], [20], [32], [37].
However, these previous works have significant limitations,
hindering their integration into real-world systems:
Suboptimal ASM scheduling strategies. There is no one-size-
fits-all solution that can accommodate the diverse range of
real-world bursty traffic conditions. For instance, some ap-
proaches, such as those in [8], [16], propose transitioning
from the deepest sleep mode (ASM 3) through intermediate
sleep modes (ASM 2, ASM 1) before waking up during
an idle cycle. In contrast, others like [20] suggest starting
with ASM 1 and progressively entering deeper modes until
ASM 3 is reached before waking up. Both strategies employ
elaborate schemes (e.g., data-driven models) to optimize the
duration of each sleep mode, aiming to balance energy savings
against the extra delay caused by mode transitions. However,

these strategies can be suboptimal under realistic bursty traffic
conditions: the former may overuse deep sleep modes in high
or medium-load periods, while the latter may do so under low
load conditions. As demonstrated in this paper, simpler ASM
scheduling strategies provide similar performance.
Unrealistic assumptions. Many of these works rely on un-
realistic assumptions, such as Poisson or log-normal traffic
arrivals [8], [16], [32]. While these models are suitable for
long-term traffic behavior, they fail to capture the bursty nature
of traffic at millisecond-level granularity (see §II). Therefore, it
is key to validate ASM strategies using realistic traffic models
or, as in our paper, traces collected from real base stations.
Lack of hard QoS guarantees. Clearly, ASM utilization entails
a trade-off between energy savings and delay. However, most
related works do not consider hard QoS constraints, opting in-
stead to approximate the constrained problem using Lagrange-
like utility functions suitable for data-driven models [8], [9],
[16], [32], [37]. While acknowledging this issue, [9] proposes
a risk model to mitigate scenarios where traffic exists but the
BS is sleeping. However, varying delay requirements across
different applications, services, or network slices motivate
sacrificing delay for further energy savings, provided these
requirements are met. This necessitates a solution with hard
delay guarantees, which, to our knowledge, our paper is the
first to provide in this context.
Compliance with real system constraints. All the previous
works propose performing ASM scheduling, which is a real-
time (sub-ms) operation in the BS, based on rather complex
methods (most of which based on reinforcement learning
models) [8], [9], [16], [19], [20], [32], [37], which are hard
to implement under such computing constraints [10]. As
we showed in this paper, simpler ASM scheduling policies,
suitable for real-time operation in the BS, are sufficient as long
as joint ASM/radio policies optimized in near-real-timescales
are in place, which is what Kairos achieves.

VII. CONCLUSIONS

In contrast to related work that proposes complex ASM
optimization algorithms for energy savings in the Radio Unit
(RU) of 5G base stations, this paper introduces Kairos, a
novel approach leveraging simple, real-time ASM and radio
scheduling policies jointly optimized in near-real time by
an O-RAN xApp. Kairos’s unique strength lies in a novel
ML framework that dynamically adapts to varying network
conditions, such as the addition or removal of network slices,
while maintaining pre-defined QoS requirements. Through
rigorous evaluation using real-world traffic patterns and a
commercial RU, we demonstrate Kairos’s ability to achieve
substantial energy reductions between 15% and 72% in the RU
while preserving QoS constraints, establishing it as a practical
solution for cost- and energy-efficient 5G networks.
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