
MemorAI: Energy-Efficient Last-Level Cache
Memory Optimization for Virtualized RANs

Ethan Sanchez Hidalgo†, J. Xavier Salvat Lozano∗, Jose A. Ayala-Romero∗,
Andres Garcia-Saavedra∗, Xi Li ∗ and Xavier Costa-Perez∗†‡

NEC Laboratories Europe∗, i2CAT Foundation†, ICREA Foundation‡

Email: ethan.sanchez@i2cat.net, {josep.xavier.salvat, jose.ayala, andres.garcia.saavedra, xi.li, xavier.costa}@neclab.eu

Abstract—The virtualization of Radio Access Networks
(vRAN) is well on its way to become a reality, driven by its
advantages such as flexibility and cost-effectiveness. However,
virtualization comes at a high price — virtual Base Stations
(vBSs) sharing the same computing platform incur a significant
computing overhead due to in extremis consumption of shared
cache memory resources. Consequently, vRAN suffers from
increased energy consumption, which fuels the already high
operational costs in 5G networks. This paper investigates cache
memory allocation mechanisms’ effectiveness in reducing total
energy consumption. Using an experimental vRAN platform, we
profile the energy consumption and CPU utilization of vBS as a
function of the network state (e.g., traffic demand, modulation
scheme). Then, we address the high dimensionality of the problem
by decomposing it per vBS, which is possible thanks to the Last-
Level Cache (LLC) isolation implemented in our system. Based
on this, we train a vBS digital twin, which allows us to train offline
a classifier, avoiding the performance degradation of the system
during training. Our results show that our approach performs
very closely to an offline optimal oracle, outperforming standard
approaches used in today’s deployments.

Index Terms—RAN virtualization, Last-Level Cache Memory,
Noisy Neighbour Problem, Digital Twin

I. INTRODUCTION

RAN virtualization is a crucial technology for reducing
the Total Cost of Ownership (TCO) of 5G RAN infrastruc-
ture [1]–[3]. Virtualized RANs (vRANs) are expected to im-
port the advantages of network function virtualization (NFV),
such as exploiting general-purpose computing platforms and
shortening deployment cycles. Collaborative efforts like the
carrier-led O-RAN alliance have stimulated the market and
the research community to develop innovative solutions that
incorporate the adaptability and cost-effectiveness of NFV
right into the edge of mobile networks [4]. Nonetheless,
while shared computing platforms offer enhanced flexibility
and cost-effectiveness, they also introduce challenges for 5G
base stations, as they compromise the predictability offered by
dedicated platforms [5]–[7]. The term noisy neighbor problem
has been coined to refer to the issue when shared resources
are consumed in extremis, meaning that another function
restricts one virtualized function’s resources. This problem has
motivated substantial research over the years [6], [8]–[10].

The work was supported by the European Commission through Grant
No. SNS-JU-101097083 (BeGREEN). This work was also supported by the
Spanish Ministry of Economic Affairs and Digital Transformation and the
European Union – NextGeneration EU, in the framework of the Recovery
Plan, Transformation and Resilience (PRTR) (Call UNICO I+D 5G 2021,
ref. number TSI-063000-2021-3) Additionally, it has been supported by
MINECO/NG EU (No. TSI-063000-2021-7) and the CERCA Programme.

1 2 3 4 5
Number of vBSs instances

0
2
4
6
8

CP
U

Us
ag

e
(c

or
es

)

No Isolation Ideal

Fig. 1: Aggregated per-core
usage with # of vBS instances
in our PoC vRAN platform.

0 20 40 60 80 100
Computing Load [%]

0

25

50

75

100

En
er

gy
 C

on
su

m
pt

io
n

[%
]

Fig. 2: Energy consumption
as a function of the computing
load.

Virtual RANs are not alien to the noisy neighbors problem
as shown in our previous work [11]. When deploying multiple
virtual Base Stations (vBSs) instances in a vRAN system, the
usage of computing resources increases. We confirm this by
deploying multiple vBS instances using Docker containers into
a pool of computing cores in a shared off-the-shelf server. In
contrast to [11], in these experiments we configured the pool
of computing cores to retain as much predictability as possible
(see §III for more details).

Fig. 1 depicts the aggregated computing usage per core in
our vRAN platform as a function of the number of deployed
vBS under maximum traffic load in uplink (UL) and downlink
(DL). The bars in yellow show the expected usage assuming
perfect resource isolation in place. We compute these by
linearly scaling up the CPU usage of a single vBS instance.
The red bars show the actual CPU consumption, which unveils
an exponentially-growing overhead induced by the aforemen-
tioned noisy neighbors problem.

As we explained in [11], the increased computing overhead
has its roots in the lack of cache memory isolation. The
computing overhead poses an issue of the increase of the total
energy consumption of the vRAN platform. Fig. 2 shows the
relationship between the normalized energy consumption on
top of the system’s baseline (i.e. idle) consumption of our
vRAN platform as a function of the total computing load.
The computing load and the energy are linearly related [12],
[13]. Therefore, it is key to minimize the computing usage of
our vRAN platform to keep operational energy costs low.

In our previous work [11], we developed a solution to di-
mension the computing capacity of a vRAN system, consider-
ing the increased computing usage due to the noisy neighbors
problem. However, this work does not consider minimizing
the increased overhead but adapting to it. In this paper, we
seek to reduce the computing overhead as much as possible.

Memory type Access latency [15]–[17] Size per core
L1 cache 4-6 cycles 64 KB
L2 cache 14 cycles 256 KB

L3 (LLC) cache 50-70 cycles 2 MB
RAM ∼ 120 - 600 cycles 2-4 GB

TABLE I: Access and cache miss latency.

We begin studying how isolating the different cache memory
levels influences the total system computing consumption. We
found that vBSs traffic demand is virtually orthogonal to using
cache resources, i.e., vBSs use as much cache memory as
possible. However, the utility of cache memory is different for
different traffic demands. The vBSs with higher demands and
Signal-to-Noise-Ratio (SNR) can reduce their computing us-
age more when they have more cache memory available. Thus,
developing a solution that strategically allocates the cache
memory resources to the different vBS instances according to
their demands is key to minimize energy consumption. Due
to the complex relationship between computing and radio re-
sources [14], we propose a novel approach that can effectively
allocate the cache resources to minimize the total computing
usage and consequently reduce the energy consumption of
vRAN platforms.

II. BACKGROUND: MEMORY IN GENERAL-PURPOSE
COMPUTING PLATFORMS

Cache memory [15] bridges the speed gap between RAM
and the CPU itself and it is organized into various levels based
on speed and size. The first two cache memory levels called
L1 and L2 cache are the closest and fastest to the system,
although its capacity is limited. Each physical core has its
dedicated L1 and L2 cache. L1 is faster than L2 but lower in
size. Lastly, the L3 cache, also known as the Last Level Cache
(LLC), is the slowest CPU’s cache and is shared among all
computing cores [15]–[17]. Table I shows the access latency
and the available size per core of different cache levels in the
Intel Skylake architecture.

Cache memory is organized into several associative sets
also known as cache ways. A cache way is a set of lines
or blocks that can store data from a specific location in the
main memory. Tools such as Intel CAT1 enables allocating
LLC cache ways to specific cores or processes.

In a general-purpose computing platform, when a core
executing a thread requires frequently used memory blocks,
it loads them into the cache for quicker access. Consequently,
if a thread references a memory block that is not present in the
cache, the core initiates an interrupt known as a “cache miss”
and searches for the data in a higher memory level. This incurs
additional CPU cycles which increase the total execution time
of a computing thread.

III. EXPERIMENTAL ANALYSIS

A. Cache memory isolation

To evaluate the impact of cache memory resources on the
noisy neighbor problem in vRANs’ energy consumption, we
measure the computing usage and low-level cache metrics

1https://github.com/intel/intel-cmt-cat

Fig. 3: vRAN testbed.

deploying a different number of vBS instances in different
scenarios in our vRAN platform. Fig. 3 shows our experi-
mental vRAN platform. Therein, we deploy the different vBS
instances in an isolated pool of computing cores from an Intel
Xenon E5-2650 v4 CPU @ 2.20GHz in a shared off-the-shelf
server. Each vBS has its dedicated RF radio head connected
to one UE, which is used to emulate the aggregated cell load.
We configured the pool of computing cores to retain as much
predictability as possible: (i) we isolated 12 cores with 12
dedicated Last Level Cache (LLC) ways, (ii) the system can
only use C0/C1 C-states and we turned off hardware P-states
and (iii) we deactivated Hyper-threading. We then initiate
bidirectional data flows, both uplink (UL) and downlink (DL),
with maximum load and good wireless channel conditions
between each vBS instance and different user equipment (UE).
We consider the following scenarios:

• Ideal. We compute the CPU usage scaling linearly the
usage of a single vBS instance assuming that the cache
memory size also scales linearly.

• No isolation. We deploy an increasing quantity of vBS in-
stances without any cache memory isolation mechanism.

• Pinning. L1 and L2 cache levels are dedicated per core.
We pin different vBS instances to distinct cores to assess
the impact on L1 and L2 cache isolation. To facilitate
comparisons, the number of cores assigned to each vBS
is given by:

cores per vBS =

⌊
total cores

deployed vBSs

⌋
(1)

where the total number of cores equals 12 and the number
of deployed vBS increases from 1 to 5. Note that when 5
vBSs are deployed, each vBS is assigned to 2 cores and
two free cores are left.

• Pinning + LLC isolation. We perform the L3 cache
allocation in the same manner as the CPU pinning. We
allocate the total number of cache ways equally for every
single vBS, i.e. the number of cache ways per vBS is
given by:

cache ways per vBS =

⌊
total cache ways
deployed vBSs

⌋
(2)

In our platform, there are a total of 12 cache ways. We
use Intel CAT to allocate the LLC cache ways to the
corresponding computing cores.

To measure the computing usage we use the /proc filesys-
tem to read and store periodically the computing time for the
different threads of a vBS on the computing cores allocated.
On the other hand, we used the tool perf to measure the

https://github.com/intel/intel-cmt-cat

1 2 3 4 5
Number of vBSs instances

0
2
4
6
8

CP
U

Us
ag

e
(c

or
es

)

No Isolation
Pinning + LLC Isolation

Pinning
Ideal

Fig. 4: Comparison of the aggregated per-core usage with # of vBS
instances showing the “No isolation”, the “Pinning” and the “Pinning
+ LLC isolation” scenarios.

1 2 3 4 5
Number of vBS instances

0.9

1.0

1.1

1.2

1.3

In
st

ru
ct

io
ns

 p

er
 C

yc
le

 (I
PC

)

No Isolation
Pinning

Pinning + LLC Isolation

Fig. 5: Instructions per cycle
(IPC) with # of vBSs.

1 2 3 4 5
Number of vBS instances

2

4

6

8
M

iss
es

 p
er

 1
00

0
 In

st
ru

ct
io

ns
 (M

PK
I)

No Isolation
Pinning

Pinning + LLC Isolation

Fig. 6: Misses per 1000 instruc-
tion (MPKI) with # of vBSs.

number of instructions per cycle (IPC) and the number of
cache misses per 1k instructions (MPKI) by one vBS.

Fig. 4 shows the measured computing usage in the different
scenarios. We observe that, for the no isolation configuration,
the computing usage increases by approximately 50% com-
pared to the ideal case, increasing the energy consumption.
This also impacts the IPC and MPKI, as shown in Fig. 5-
6, respectively. We observe that the IPC decreases and the
cache misses increase as more instances are deployed. There
is a sixfold increase in the cache misses when transitioning
from 1 to 5 vBSs. This increase also impacts the number of
cycles required to execute the same number of instructions,
decreasing the IPC.

The Pinning configuration shows a lower computing usage
than the No isolation but still higher than the ideal case. The
computing usage decrease is significant considering that L1
cache ways are approximately 100 times lower in size than
L3 cache ways and L2 cache ways are 10 times lower in
size than L3 cache ways. In Fig. 5 we can observe a higher
IPC across any number of deployed vBSs compared to the No
isolation scenario. However, Fig. 6 shows the same number
of cache misses for all the cases. This might seem shocking
at first glance, but as we have previously detailed L1 and L2
cache way size is very low compared to L3.

Finally, to study the effect of the L3 cache isolation. In
Fig. 4, the Pinning + LLC isolation configuration does not
improve the computing usage. Specifically, the computing
usage is the same for all the cases except for the case with 5
vBS, in which it is slightly higher. The reason behind this
behavior is that we only allocate 10 out of 12 L3 cache
ways to all vBSs for the case of 5 vBSs, while in the
Pinning configuration, all vBSs have all the L3 cache memory
available, using on average 2.4 L3 cache ways.

B. LLC occupancy and utility

We now study how the allocation of LLC cache ways
impacts the computing usage of a vBS instance. First, we

25 50 75 100
Normalized Demand [%]

50

60

70

80

90

100

LL
C

Oc
cu

pa
nc

y
[%

]

UL Low
UL High

DL Low
DL High

(a) 12 LLC cache ways.

25 50 75 100
Normalized Demand [%]

50
60
70
80
90

100

LL
C

Oc
cu

pa
nc

y
[%

]

UL Low
UL High

DL Low
DL High

(b) 2 LLC cache ways.

Fig. 7: LLC occupancy in % as a function of the total demand
for different SNR cases in UL and DL.

0.50

0.75

1.00

1.25

C
PU

 U
sa

ge
 (c

or
es

) Low Traffic

U
plink

High Traffic

1 2 3 4 5 6 7 8
Number of Cache Ways

0.50

0.75

1.00

1.25

C
PU

 U
sa

ge
 (c

or
es

)

1 2 3 4 5 6 7 8
Number of Cache Ways

D
ow

nlink

MCS
5 10 15 20 25

Fig. 8: Computing usage as a function of the LLC allocated cache
ways for different SNR and in UL and DL.

measure the percentage of LLC cache memory used of the
total LLC memory allocated to a vBS as a function of the
traffic demand. Fig. 7 shows the LLC occupancy with 12
and 2 LLC cache ways for different SNR values and traffic
demands in uplink and downlink. The high series depict the
LLC occupancy with a high SNR environment while the low
series depict the LLC occupancy with a low SNR environment.
We can see that the total LLC occupancy is above 80% for
uplink and downlink. Also, the LLC occupancy is almost
orthogonal to the demand of the vBS, yielding an increase
of a 2− 6% when the demand goes from 10% to 100%.

Finally, Fig. 8 depicts the computing usage of a vBS
as a function of the L3 cache ways when we deploy it
using 3 cores. Fig. 8 depicts the computing usage for the
different Modulation Coding Schemes (MCSs) with a low
traffic demand (i.e. 20% of the total demand) and high traffic
demand (i.e. 100% of the total demand) for uplink and
downlink. We observe that there are significant differences
between the achievable computing usage reduction. For high
traffic both in uplink and downlink, we can achieve a more
significant computing usage reduction. On the contrary, a vBS
that processes a low traffic demand can attain lower gains in
terms of computing usage. We conclude that LLC resources
have different utility depending on the vBS context.

This contrasts with Fig. 7 which shows that the vBS makes
full use of the cache memory regardless of the demand.
Thus, if there is no LLC cache allocation mechanism, all
vBSs deployed will be using the same amount of LLC cache
memory on average. It is key to strategically distribute the

11 15 19 23
SNR (db)

1.0

1.2

1.4
CP

U
Us

ag
e

(c
or

es
)

(a) Computing usage.

11 15 19 23
SNR (db)

400

600

800

FE
C

Ti
m

e
(

s)

(b) Decoding time.

Fig. 9: Computing usage and decoding time of a vBS with
max. UL and DL load with mild MCS over different SNR
conditions.

LLC cache ways among the vBSs deployed boosting its utility
to minimize the computing usage and therefore the energy
consumption depending on the traffic demands.

C. The problem

Quantifying the LLC cache memory utility is a challeng-
ing task. The LLC cache utility depends on the computing
demands of the vBS which are influenced by various factors,
including traffic demand in both the downlink (DL) and uplink
(UL), the signal-to-noise ratio (SNR) of each wireless link,
and the specific Modulation Coding Scheme (MCS) utilized
for communication. All these elements interact in a complex
manner [14], [6]. Fig. 9a depicts the relative mean core
usage of the vBS, and shows that, given a MCS, lower SNR
regimes demand a higher amount of computing resources. The
underlying reason is the iterative nature of the forward-error-
correction (FEC) algorithms – signals received with lower
SNR require a higher number of FEC iterations to decode
the transported codeword successfully. This is confirmed by
Fig. 9b, which shows the amount of time taken by the decoder
to finish its task for every transport block.

IV. PROBLEM FORMULATION

We consider a vRAN platform comprising Mcores computing
cores and NLLC LLC cache ways. We consider that NvBS vBS
instances are deployed in the platform. Every vBS i in the
vRAN platform has both a UL and DL traffic demand denoted
by dUL

i and dDL
i , respectively; a SNR si; and an MCS in UL

and DL denoted by mUL
i and mDL

i , respectively, that the radio
scheduler selects depending on si. The vBS i has a set of
isolated cores Pi such that |Pi| > 0 and a number of dedicated
LLC cache ways nLLC

i , where nLLC
i ≥ 1 ∀i. We need to

satisfy that
∑

i |Pi| ≤ Mcores and
∑

i n
LLC
i = NLLC . We

define ci as the computing use of vBS i.
We define xi := (dUL

i , dDL
i , si,m

UL
i ,mDL

i) as the context of
the vBS i. Moreover, we define fi as the function that maps
xi and nLLC

i to the computing usage ci.
Finally, we define vector X which concatenates the context

vectors from all vBS as X := (x1,x2, . . .xNvBS). Also, we
define P := (P1, . . . , PNvBS) and N := (nLLC

1 , . . . , nLLC
NvBS

) as
the vectors with the core set allocation and the LLC cache
ways allocation on a vRAN platform. Similarly, we define
the function f which maps (X ,N) to the total computing
usage CvRAN ∈ [0,Mcores] of the vRAN platform. We define

 Digital Twin

Training

(One vBS real data)

 Optimal dataset generation

for minimum

 Classifier

Training

3 2 1

Fig. 10: MemorAI optimization framework.

the problem of optimizing the computing set and the LLC
allocation as:

min
N

f(X ,N) (3)

subject to
∑
i

nLLC
i = NLLC .

As explained in §I, the computing usage and the energy con-
sumption are proportional. Thus, minimizing the computing
usage function f also minimizes the total energy consumption.
Note that, in our problem, the assignment of CPU cores
to vBS P is already given. We select a fixed value of P
based on our experimental insights and previous works on
this topic [11], [14] (see Sec. VI for more details). Note
that, in the problem (3), the optimal LLC cache allocation
depends on the context X , whose dimensionality increases
depending on the number of vBSs. Moreover, the optimal
action is also dependent on the number of active vBS, which
may change over time. To avoid the exploration burden of
learning algorithms (e.g., reinforcement learning) that can lead
to suboptimal configurations, we decompose the problem and
use a digital twin system.

V. MEMORAI
To solve (3), we propose an optimization framework which

we call MemorAI. This framework considers discrete decision
intervals denoted by t ∈ {1, 2, . . . , T}. At the beginning of
each decision interval, our solution receives X (t), and decides
the optimal LLC allocation N ∗(t) across all vBSs, to minimize
the energy consumption. MemorAI is composed of a set of
Digital Twins (DTs) and a Neural Network (NN) classifier.
Fig. 10 shows our optimization framework.

A. Digital Twin

Thanks to full vBS isolation via pinning it to dedicated cores
and LLC cache ways allocation, we make the observation that
CvRAN =

∑
i ci as there are no joint effects between vBSs.

This observation implies that f(X ,N) =
∑

i fi(xi, n
LLC
i).

As there is no interaction among vBS in terms of computing
usage, we can create DTs of independent vBS. Thus, we can
mirror their behavior in a safe and controlled environment for
testing and learning. Each DT can model the particularities
of each vBS (e.g., different implementations protocol stacks)
and we can emulate the complex interactions of the full vRAN
system. We create a DT using operational data from one vBSs.
Using each vBS’s DTs, we can lower the time cost to generate
a dataset for a number of vBS as we aggregate the results
of each DT. Note that without the DTs, the amount of data
needed to create a training dataset increases exponentially with
the number of vBS (curse of dimensionality).

0 20 40 60
Training Iteration

5
10
15

M
SE

 L
os

s
Training Validation

Fig. 11: Digital Twin MSE
Loss.

0 100 200 300
Training Iteration

0.2
0.3
0.4
0.5
0.6

Cr
os

s E
nt

ro
py

 L
os

s Trainning Validation

Fig. 12: NN Classifier Cross
Entropy Loss.

To create the Digital Twin of one vBS we used our vRAN
platform to generate a training dataset with a fixed computing
core set |P |. Note that we select a set of cores such that vBS
can correctly operate. This makes fi a continuous function.
Each dataset sample contains a 4-tuple with (x, P, nLLC, c).
Using this dataset, we built up a DT using a Neural Network
(NN) which approximates c using (x, P, nLLC) i.e. it approxi-
mates fi minimizing the Minimum Squared Error (MSE). We
denote the DT function as f̂D

i . Fig. 10 1 , shows the DT
training step.

B. NN Classifier

The DT allows us to evaluate the CPU usage of different
configurations very accurately without having to use the real
system. Therefore, we can perform an exhaustive search to
find the optimal LLC allocation N ∗ for a set of contexts
(X ,P). Note that the size of the set of possible LLC cache
allocations is |N | =

(
NLLC−1
NvBS−1

)
. Fig. 10 2 , shows how using

the different DTs we generate the previous data set.
Using this data set, we train a fully connected NN to

predict N ∗ for a given context (X ,P). Specifically, we solve
a multi-class classification problem using the cross-entropy
loss function. We denote the classifier function as f̂C . Note
that our solution is very flexible to changes in the system
(e.g., upgrades in the implementation of the software stack,
deployment of new vBSs, etc.). In those cases, after having the
digital twin modeling, we can easily retrain the NN classifier
offline without degrading the performance of the system.
Finally, Fig. 10 3 , shows the classifier training step of our
optimization framework.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance and potential
savings of our approach. We carry out the evaluation for a
NvBS = 5 vBS deployment. We used PyTorch2 to implement
the Digital Twin and the Classifier.

A. Training Evaluation

1) Digital Twin: We implemented the DT of one vBS
using a NN with three hidden layers of sizes {256, 128, 64}
respectively with a ReLU activation function. Moreover, we
stop the training iterations using an early stopping mechanism
to prevent overfitting [18]. The early stopping mechanism
stops the training after the value of the loss function in a
validation data set has not improved during the last N training
iterations. N is usually referred to as patience.

2https://pytorch.org/

Random Equal
 Part.

Weighted
0.0

0.5

1.0

En
er

gy
 S

av
in

gs
 [k

J] Optimal MemorAI

(a) 12 Cache Ways.

Random Equal
 Part.

Weighted
0.0

0.5

1.0

En
er

gy
 S

av
in

gs
 [k

J] Optimal MemorAI

(b) 8 Cache Ways.
Fig. 13: Energy savings compared to different benchmarks and
different number of cache ways for a 15 min decision interval.

Fig. 11 shows the MSE loss value on the training and
validation data sets of the DT as a function of the training
iterations. We selected a patience of N = 10 and trained the
model during 70 iterations.

2) NN Classifier: On the other hand, we implemented the
Classifier as a NN with 4 hidden fully connected layers of
sizes {512, 384, 384, 512} respectively. Each layer also used
a ReLU activation function and we introduced a 0.2 dropout
probability during training. We also use the early stopping
mechanism with N = 50 of patience.

Fig. 12 shows the cross entropy loss on the training and
validation data set as a function of the number of training
iterations. We train the model until iteration 300 (due to the
early stopping mechanism). The training loss is higher than the
validation loss due to the dropout layers. Also, the classifier
achieves a 92.1% accuracy on our testing data set.

B. Performance Benchmark

We design MemorAI to operate in the Non-Real Time RIC
of the O-RAN architecture as an rApp [19]. Based on this, we
selected a time granularity of 15 minutes for our evaluation
[20]. We generated a data set with random context data and
compared MemorAI against the following approaches:

• Random: We select the allocation of cache ways for each
vBS randomly;

• Equal partition: All the vBSs get allocated the same
number of cache ways. Extra cache ways are left unallo-
cated;

• Weighted: Each vBS gets allocated a number of cache
ways as proportionally to its total demand as:

nLLC
i =

dUL
i + dDL

i∑
j d

UL
j + dDL

j

·NLLC

Fig. 13a shows the energy savings in kilojoules (kJ) of our
solution and the optimal strategy with respect to the different
benchmarks in a decision interval of 15 minutes. Our solution
outperforms the three benchmarks in terms of energy while
producing almost the same results as the optimal solution.
Thus, MemorAI understands better the utility of LLC cache
partitioning than benchmark strategies. Our solution yields
higher savings up to 1 kJ compared to the random strategy, up
to 0.35 kJ compared to the equal partitioning, and up to 0.36
kJ compared to the weighted strategy. Note that, although the
weighted strategy shows a lower power consumption, it does
not scale the LLC cache properly when there is an imbalance

https://pytorch.org/

between UL and DL demands. In these cases, our approach
achieves the highest gains with respect to this strategy.

Finally, Fig. 13b shows the attained gains when the system
has only 8 cache ways available. In that case, the random
approach performs better because the number of configurations
is lower and therefore the probability of selecting the optimal
configuration is higher. The savings compared to the equal
partition approach are higher as the benchmark can only
allocate one cache way per vBS in this scenario. Compared
to the weighted strategy, we still observe higher savings.

VII. RELATED WORK

The noisy neighbor problem has been studied for different
types of virtualized resources. The works in [7], [21] propose
different solutions to effectively isolate the networking stack.
The authors in [21] show that containers’ computing time
processing packets via interrupts is not correctly accounted.
Therefore, the authors develop a solution to called Iron which
effectively charges the computing time used for processing
packets to each container. Authors in [7] develop PicNIC a
predictable virtualized NIC abstraction that effectively pro-
vides predictable performance to cloud providers.

The works in [8]–[10] develop different solutions to par-
tition the memory resources to effectively isolate different
tenants using the same infrastructure. The work in [8] develops
a solution to estimate the slowdown of an application due to
the interference from other applications and propose different
strategies to share the memory resources. In [10] authors
develop a clustering solution to fairly partition the LLC cache
ways for different applications using Intel CAT. Moreover,
in [9] the authors develop a solution to fairly allocate LLC
cache and memory bandwidth for workload consolidation.

Finally, [6], [11], [22] tackle the noisy neighbor problem in
the context of vRANs. In our previous work in [11] we showed
that vRANs experience an increased computing consumption
due to interference in the cache memory that can lead users to
lose connectivity. We designed AIRIC, an AI controller that
dimensions the computing capacity of a vRAN system con-
sidering the computing overhead. The authors in [6] enhance
the physical layer pipeline of operations of a vBS so that it
is suitable to run in non-deterministic computing platforms.
Finally, in [22] authors develop a solution to increase the CPU
utilization in vRAN platform opportunistically co-locating
non-5G workloads while ensuring correct operation.

VIII. CONCLUSIONS

Cache memory is a key resource for vRANs to reduce
energy consumption. Non-isolated access to cache memory
resources increases energy consumption, making less attractive
the advantages of virtualization. In our work, we have studied
how the different mechanisms for cache memory isolation
decrease the energy consumption of a vRAN platform. Then,
we proposed MemorAI which strategically allocates LLC re-
sources to minimize energy consumption. MemorAI comprises
a digital twin and a neural network classifier, providing a
very efficient and flexible solution. MemorAI achieves almost

optimal performance and can attain significant energy savings
when compared with other strategies.

REFERENCES

[1] M. Masoudi, S. S. Lisi, and C. Cavdar, “Cost-effective migration toward
virtualized c-ran with scalable fronthaul design,” IEEE Systems Journal,
vol. 14, no. 4, pp. 5100–5110, 2020.

[2] F. W. Murti et al., “An optimal deployment framework for multi-
cloud virtualized radio access networks,” IEEE Transactions on Wireless
Communications, vol. 20, no. 4, pp. 2251–2265, 2020.

[3] Samsung, “Virtualized Radio Access Network: Architecture, Key tech-
nologies and Benefits.” Technical Report, 2019, Link.

[4] O-RAN Alliance, “Cloud Architecture and Deployment Scenarios for
O-RAN Virtualized RAN (O-RAN.WG6.CADS-v04.00) ,” Technical
Report, Oct. 2022.

[5] A. Tootoonchian et al., “ResQ: Enabling SLOs in Network Function
Virtualization,” in Proceedings of the 15th USENIX NSDI, 2018, pp.
283–297.

[6] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
P. Serrano, and A. Banchs, “Nuberu: Reliable ran virtualization in shared
platforms,” in Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking, 2021, pp. 749–761.

[7] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius,
J. Adriaens, S. Gribble, N. Foster et al., “Picnic: predictable virtualized
nic,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 351–366.

[8] L. Subramanian et al., “The application slowdown model: Quantifying
and controlling the impact of inter-application interference at shared
caches and main memory,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 62–75.

[9] J. Park, S. Park, and W. Baek, “Copart: Coordinated partitioning of
last-level cache and memory bandwidth for fairness-aware workload
consolidation on commodity servers,” in Proceedings of the Fourteenth
EuroSys Conference 2019, 2019, pp. 1–16.

[10] V. Selfa et al., “Application clustering policies to address system fairness
with intel’s cache allocation technology,” in 2017 26th international
conference on parallel architectures and compilation techniques (pact).
IEEE, 2017, pp. 194–205.

[11] J. X. Salvat Lozano, A. Garcia-Saavedra, X. Li, and X. Costa Perez,
“AIRIC: Orchestration of virtualized radio access networks with noisy
neighbours,” Accepted for publication in IEEE Journal on Selected Areas
in Communications, 2023.

[12] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” ACM SIGARCH computer architecture
news, vol. 35, no. 2, pp. 13–23, 2007.

[13] C. Lefurgy et al., “Server-level power control,” in Fourth International
Conference on Autonomic Computing (ICAC’07). IEEE, 2007, pp. 4–4.

[14] J. A. Ayala-Romero et al., “vrain: Deep learning based orchestration for
computing and radio resources in vrans,” IEEE Transactions on Mobile
Computing, vol. 21, no. 7, pp. 2652–2670, 2022.

[15] B. Jacob, D. Wang, and S. Ng, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

[16] J. Patterson, “Modern microprocessors: A 90 minute guide!” Cortex,
vol. 15, p. A57, 2003.

[17] U. Drepper, “What every programmer should know about memory,” Red
Hat, Inc, vol. 11, p. 2007, 2007, Link.

[18] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the trade. Springer, 2002, pp. 55–69.

[19] O-RAN Alliance, “O-RAN Non-RT RIC Architecture 3.0 (O-
RAN.WG2.Non-RT-RIC-ARCH-R003-v03.00),” Technical Report, Jun.
2023.

[20] C. Marquez et al., “How should i slice my network? a multi-service
empirical evaluation of resource sharing efficiency,” in Proceedings of
the 24th Annual International Conference on Mobile Computing and
Networking, 2018, pp. 191–206.

[21] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira,
and A. Akella, “Iron: Isolating network-based {CPU} in container
environments,” in 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), 2018, pp. 313–328.

[22] X. Foukas and B. Radunovic, “Concordia: Teaching the 5g vran to
share compute,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 580–596.

https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/virtualized-radio-access-network/white-paper_virtualized-radio-access-network.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

	Introduction
	Background: memory in general-purpose computing platforms
	Experimental analysis
	Cache memory isolation
	LLC occupancy and utility
	The problem

	Problem Formulation
	MemorAI
	Digital Twin
	NN Classifier

	Performance Evaluation
	Training Evaluation
	Digital Twin
	NN Classifier

	Performance Benchmark

	Related Work
	Conclusions
	References

