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ABSTRACT
Bidding optimization is one of the most important problems in
online advertising. Auto-bidding tools are designed to address this
problem and are offered by most advertising platforms for advertis-
ers to allocate their budgets. In this work, we present a Knowledge
Graph-enriched Multi-Agent Reinforcement Learning Advertising
Framework (KRAF). It combines Knowledge Graph (KG) techniques
with a Multi-Agent Reinforcement Learning (MARL) algorithm for
bidding optimization with the goal of maximizing advertisers’ re-
turn on ad spend (ROAS) and user-ad interactions, which correlates
to the ad platform revenue. In addition, this proposal is flexible
enough to support different levels of user privacy and the advent of
new advertising markets with more heterogeneous data. In contrast
to most of the current advertising platforms that are based on click-
through rate models using a fixed input format and rely on user
tracking, KRAF integrates the heterogeneous available data (e.g.,
contextual features, interest-based attributes, information about
ads) as graph nodes to generate their dense representation (embed-
dings). Then, our MARL algorithm leverages the embeddings of the
entities to learn efficient budget allocation strategies. To that end,
we propose a novel coordination strategy based on a mean-field
style to coordinate the learning agents and avoid the curse of di-
mensionality when the number of agents grows. Our proposal is
evaluated on three real-world datasets to assess its performance and
the contribution of each of its components, outperforming several
baseline methods in terms of ROAS and number of ad clicks.
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1 INTRODUCTION
Online advertising has been gaining more importance in modern
advertising markets during the last decade. It allows advertisers to
increase the exposure of their products, improve user targeting and
increase the platform revenue. Its market is increasing every year
generating hundreds of billions of dollars per year [24]. Moreover,
the online advertising industry is changing at a rapid pace due
to the new privacy regulations and the advent of new advertising
markets. This implies that the access to user data will be more and
more restricted (e.g., 3rd party cookies are expected to eventually
disappear [2]) limiting user profiling and targeting. Additionally,
new advertising markets could bring in additional information and
challenges to the advertising platform, such as in Autonomous Ad-
vertising, where companies offer free rides in autonomous cars in
exchange for showing ads during the ride [7, 11], the geolocation
and the route should be taken into consideration for ads servic-
ing. For these reasons, the new generation of advertising platforms
should adapt to heterogeneous data and market-dependent infor-
mation. However, most of the current advertising platforms rely
on click-through rate (CTR) models that use sequential user-ad
interactions of a fixed format as inputs and rely on user tracking.

Furthermore, advertisers need to allocate their budget over time
by sequentially selecting a bid value for each ad impression slot.
While other works formulate the problem for a single bidder con-
sidering the market price stationary [3, 6, 35, 42], the auction mech-
anism is actually a multi-agent system by nature. That is, the out-
come of each advertiser is highly dependent on the actions of all
the involved bidders. This renders a complex coupled problem in
which the change in the bidding strategy of one of the agents will
affect others’ strategies and vice versa. Finally, some additional
aspects make this problem very challenging to solve. First, reward
signals based on user response (e.g., click, conversion) are very
sparse, preventing learning approaches to find efficient solutions.
Second, the budget of the advertisers is usually limited and it is
desirable to spend it throughout the whole day. Running out of
budgets very early or having an unspent budget at the end of the
period are not desirable situations and are indicating an ineffective
use of the budget. Third, each advertiser has a different budget and
performance. Prioritizing some of them can increase the benefit of
the platform in the short term (e.g., advertisers with higher CTR
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or budget), but it can be disadvantageous in the long term as the
advertisers may decide to stop using the advertising platform due
to their poor performance.

To overcome these challenges, we propose a Knowledge Graph-
enrichedMulti-AgentReinforcement LearningAdvertising Framework
(KRAF). This novel advertising framework can efficiently use het-
erogeneous data of different natures and adapt to diverse privacy
settings. We tackle the problem of the coordination among adver-
tisers by proposing a multi-agent learning algorithm with a novel
coordination mechanism. Besides, we address the sparse system
feedback and the constrained budget allocation problems by learn-
ing farsighted learning strategies using shaped reward signals.

Specifically, we integrate all the available information such as
past user-ad interactions (if available), information about the user or
ad slot (e.g., contextual information, interest groups from Interest-
Based Advertising, etc), and information about ads (e.g., type of
product, brand, etc.) into a Knowledge Graph (KG), e.g., Freebase [1],
Microsoft Satori [25], etc. Based on that, we learn a dense represen-
tation of users and ads (embeddings) as well as a user-ad affinity
metric and use them for decision-making. For that purpose, we ap-
ply a hybrid approach that combines Knowledge Graph Embedding
(KGE) models and graph convolution networks (GCN) [33]. The
KGE models parameterize entities and relations as vector represen-
tations preserving the structural properties of the graph and the
GCN propagates recursively the information of the nodes. Hence,
the embedding of each node is updated based on the embeddings of
its neighbors, thus capturing high-order connectivity in the graph.

Then, we rely on Multi-Agent Reinforcement Learning (MARL)
to learn farsighted bidding strategies for advertisers. We propose a
novel coordination strategy for ourMARL solution based on amean-
field style, using custom coordination signals designed specifically
for this problem. The coordination strategy also avoids the curse of
dimensionality with the growth of the number of agents. In order
to avoid the problem of sparsity in the rewards signal, we use a
shaped reward signal to control the spent budget during the day
providing fairness among advertisers.

As a result, we propose a very flexible advertising framework
that efficiently allocates the advertisers’ budget maximizing their
ROAS and taking into account the total platform revenue. The
novel combination of KG techniques and a customMARL algorithm
allows KRAF to adapt to several advertising settings with different
data availability and user privacy.

2 RELATEDWORK
Learning user preferences using KG. KG techniques have been
recently incorporated into recommender systems to improve their
performance [10]. The strength of KG techniques relies on its ca-
pacity to agglutinate heterogeneous information from different
domains. In the context of making recommendations, KGs can
include feedback from users (ratings, clicks, dwell, times, etc.), con-
tent information of the items (e.g., item attributes like brands or
categories the item belongs to), and user side information (e.g.,
device type). KG-based recommendation systems can be catego-
rized into path-based and embedding methods, depending on how
they leverage KGs. In path-based methods [27, 29, 44], long-range
connectivity is used to connect the item and the target user via KG

entities. The user preference is predicted based on these paths us-
ing different techniques. For example, the authors in [29] enhance
the user representation by memorizing the item representation
along with the user-item paths. Nevertheless, the recommendation
accuracy with these methods is highly dependent on the quality
of paths, which are hard to design. In embedding-based methods
[12, 30, 41], a Knowledge Graph Embedding (KGE) algorithm is used
to extract the embedding of each entity and relation in the graph.
Then, the entity embeddings are used to better represent items for
recommendation. For example, the authors in [30] propose a deep
end-to-end framework that learns high-order interactions between
items using knowledge graph embedding and cross & compress
units. Other works apply graph neural networks in order to exploit
the KG structure. Thus, they distill embeddings based on the node’s
neighborhood information and effectively apply them for recom-
mendation. For example, the authors in [33] combine KGE with
graph attention networks in order to model the high-order connec-
tivity in an end-to-end fashion. However, all of these methods rely
essentially on one-step prediction tasks based on instantaneous
feedback, neglecting the long-term utility.

To overcome this issue, other works combine KG techniques with
reinforcement learning (RL) in the context of recommender systems
[4, 32, 46]. For instance, in [46] a graph convolutional network is
used to learn the state representation to enhance the performance
of an RL recommendation policy.

In contrast to previous works, we face a more challenging prob-
lem with a twofold objective: Firstly, similar to recommender sys-
tems, we aim to deliver high-quality ads matching users’ interests.
Secondly, we aim to find an optimal policy to allocate the budget of
all advertisers over time to maximize their ROAS. In this context,
we combine KG techniques with MARL algorithms to address this
double objective. To the best of our knowledge, this is the first time
that KG techniques are used in advertising.

Bid optimization. Bid optimization is one of the most studied
problems in advertising. The goal is to optimize the bid value of
advertisers aiming at maximizing some KPIs under budget con-
straints [31]. Some works formulate it as an optimization problem
[23, 42]. The authors in [42] model the optimal bidding strategy as
a non-linear function of the predicted CTR (pCTR). However, these
methods are not able to incorporate budget constraints.

Other works propose more sophisticated bidding strategies that
rely on reinforcement learning (RL). The authors in [3] model the
problem as a Markov Decision Process (MDP) and learn sequen-
tially how to allocate the budget. In [35], deep RL is used to optimize
the bidding strategy based on a high-level semantic information
state. All these works perform bid optimization of one single agent
(advertiser), while the competitors are considered as a part of the
environment, i.e., the market price is considered stationary. How-
ever, the single-agent RL formulation neglects that the auction
mechanism is a multi-agent system by nature as the outcome of
each of the agents depends on all the involved bidding agents.

To alleviate this problem, some works formulate the problem as
a Markov Game and propose MARL strategies for bid optimization
[5, 16, 37, 38]. The authors in [16] group advertisers into clusters
and apply the Deep Deterministic Policy Gradient algorithm [19]
at the cluster level. This approach is extended in [5], where the
authors assume partially observable opponents. They aggregate
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the competitors in each auction as a virtual agent and introduce an
opponent model for market price prediction. Finally, the authors
in [37] propose a mixed cooperative-competitive framework to
trade-off between advertisers’ utility and platform revenue. To that
end, they propose a reward credit assignment scheme to balance
cooperation and competition. In all these works it is assumed that
either the affinity between the user and the ad (e.g., pCTR) or the
value of the ad is given.

In contrast, we propose a framework that uses additional infor-
mation about ads (e.g., type of product or service, utility, etc.), user
information (if available), and contextual information (related to the
ad slot). All this information allows us to exploit potential higher-
level links between users and ads that are taken into account for
budget allocation decision-making. Moreover, our proposed frame-
work provides a high level of flexibility allowing us to integrate any
type of relevant information into the bidding process. This favors
its integration in new advertising markets such as autonomous
advertising [7]. Finally, our framework can easily integrate user
privacy methods such as Interest-based advertising (IBA) [9].

3 PROBLEM FORMULATION
3.1 Unified Knowledge graph
User-ad interaction bipartite graph. The interactions between
users and ads (e.g., click, purchase, visualization) are usually recorded
in the advertising platforms. This information can be encoded
into a user-ad bipartite interaction graph G𝑗 composed of entity-
interaction-entity defined as {

(
𝑢, 𝜇 𝑗 , 𝑧

)
|𝑢 ∈ U, 𝜇 𝑗 ∈ M 𝑗 , 𝑧 ∈ Z},

where U is the set of users, M 𝑗 is the set of available interactions
(e.g., click, purchase), andZ is the set of ads.

Knowledge Graph. Besides the interactions between users and
ads, some additional information about these entities can be avail-
able. We can have ad attributes such as "smartphone", "Huawei
(brand)", or "5G connectivity". We can also use information about
the user via, for instance, contextual advertising. For example, if a
user is reading an article about the performance of LeBron James
in his last game in a digital sports newspaper, we can extract at-
tributes such as "sport", "basketball", and "NBA". These attributes
are related to the preferences of the user. Considering IBA, the
attributes represent the user’s topics of interest.

We assume that these attributes have an associated entity in
a Knowledge Graph (KG), e.g, Freebase [1], Microsoft Satori [25].
We define the KB G𝑘 as a set of triples subject-property-object.
Formally, G𝑘 = {(ℎ, 𝜇𝑘 , 𝜔) |ℎ,𝜔 ∈ E𝑘 , 𝜇𝑘 ∈ M𝑘 }, where E𝑘 is the
set of entities andM𝑘 is the set of possible relations from the head
entity ℎ to the tail entity 𝜔 . KGs encode objects, events, situations
or abstract concepts structured as a graph. An example of a KG
triple is {ℎ = "Albert Einstein", 𝜇𝑘 = "born in", 𝜔 = "Germany"}.

Unified Knowledge Graph (UKG). Assuming that every at-
tribute has a corresponding entity in the KG, we can merge the
user-ad interaction bipartite graph, its attributes, and the Knowl-
edge Graph into a Unified Graph G = {(ℎ, 𝜇, 𝜔) |ℎ,𝜔 ∈ E, 𝜇 ∈ M},
where E = E𝑘 ∪U ∪Z, andM = M𝑘 ∪M 𝑗 . By using the Unified
Knowledge Graph we can exploit high-order connectivity among
nodes (Fig. 1). For example, if user1 and user2 clicked on ad1 and
user2 also clicked on ad2, we can think that user1 may like ad2
(similarity between users). This can be represented in the following

Bipartite graph

User 1

User 2

User U

Ad 1

Ad 2

Ad A

Attrib. 1

Attrib. 2

Attrib. K

. . .

. . .

. . .

Knowledge Graph (KG)

Figure 1: Unified Knowledge Graph. The available ads are repre-
sented as graph entities in green. The graph entities in blue represent
the users that interacted with these ads, but they can also represent
ad slots or user groups, depending on the setting. The entities in
yellow represent attributes of the blue entities. For example, if the
blue entities are ad slots the attributes can be contextual features. If
considering IBA, the attributes can be the users’ topics.

graph: 𝑢1
𝜇𝑐𝑙𝑖𝑐𝑘−−−−−→ 𝑧1

−𝜇𝑐𝑙𝑖𝑐𝑘−−−−−−→ 𝑢2
𝜇𝑐𝑙𝑖𝑐𝑘−−−−−→ 𝑧2, in which it is shown a

multi-hop relation of length 3 between 𝑢1 and 𝑧2. This is similar
to collaborative filtering (CF) methods, which recommend similar
items to users with similar behavior. However, the example above
only considers the interaction bipartite graph and we can go further
by considering the UKG. For instance, two ads that are different
(e.g., smartphone ad and smartwatch ad) can be connected through
the UKG. Both ads can be connected with entities such as "gad-
get", "technology", and brand. This reveals that these ads can be a
good match for users with an affinity for technology, even when
previous records of these ads are not available. Similarly, we can
find affinity among users by, for example, using their contextual
information. Let us assume that we extract that two users have
affinities for "tennis" and "badminton", respectively, based on their
contextual information. These attributes will be connected in the
UKG since they are "sports", and more specifically "racket sports".
Thus, a high-order connection will be established between them. In
contrast, CF and other supervised learning methods do not exploit
these high-order relations.

Embedding representation and affinity. Our final goal is
to allocate the budget of the advertisers. To this end, we need
to distill dense vector representations of users and ads. This is
fundamental in order to build the state of the decision-making
algorithm. The latent representation should encode not only the
user-ad interactions but also the higher-order relation to better
characterize the entities in the graph. Different techniques can
be used to distill the structural and relational knowledge of the
graph into a dense latent representation or embeddings, which we
described in Section 4.1. Moreover, based on these embeddings, we
also predict the interest of users in ads by learning the affinity 𝛿𝑢,𝑧
between user 𝑢 and ad 𝑧.

3.2 Budget Allocation as a Markov Game
We formulate the budget allocation in the sequential auctions as
a stochastic game given by Γ =< 𝑁,S,A,R,P, 𝛾 >. The number
of players or agents is given by 𝑁 , 𝛾 is the discount factor, and
S,A,R,P are the sets of states, joint actions, reward functions
and transition probability functions, respectively. At each time 𝑡 ,
the state observation of each agent 𝑖 is denoted by 𝑜𝑖𝑡 ∈ S𝑖 , and
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the system state is s𝑡 = (𝑜1
𝑡 . . . 𝑜

𝑁
𝑡 ) ∈ S. The joint action of all

agents at time 𝑡 is denoted by a𝑡 = (𝑎1
𝑡 . . . 𝑎

𝑁
𝑡 ) ∈ A. Each agent

selects the actions based on a policy 𝜋𝑖 : S𝑖 ↦→ A𝑖 and the join
policy is defined as 𝜋 = (𝜋1 . . . 𝜋𝑁 ). When the agent 𝑖 selects the
action 𝑎𝑖𝑡 , it transits to the next state 𝑜𝑖

𝑡+1 ∼ P𝑖
𝑡 (s𝑡 , a𝑡 ), where

P𝑖
𝑡 ∈ P : S ×A × S ↦→ [0, 1]. Then, the agent receives the reward

𝑟𝑖,𝑡 ∼ R𝑖
𝑡 (s𝑡 , a𝑡 ), where R𝑖

𝑡 ∈ R : S × A ↦→ R. Note that both the
transition probabilities and the reward functions depend on the
system state s𝑡 and the joint action a𝑡 .

The value function of a certain joint policy 𝜋 for the agent 𝑖 is
given by

𝑣𝑖𝜋 (s) =
𝑇∑︁
𝑡=0

𝛾𝑡E𝜋,P
[
𝑟𝑖,𝑡 (s𝑡 , a𝑡 ) |s0 = s, 𝜋

]
, (1)

where 𝛾 ∈ [0, 1] is the reward discount factor and 𝑇 indicates the
number of auctions or bid requests in one day. Note that the value
𝑇 may change depending on the day.

The objective of the agents is to find the optimal policy 𝜋∗ that
maximizes their value function shown in eq. (1). Note that each
player has an independent reward function that depends on the
behavior of other agents. Therefore, the definition of the optimal
policy is not clear in this setting as the maximization of the value
function for one user can harm the value function for others, making
the game non-stationary. To solve this problem we propose an
equilibrium-based approach [40]. That is, we aim at finding the
Nash equilibrium (NE) optimal policy 𝜋∗. When the joint policy
converges to 𝜋∗ no agent can improve its value function while other
agents keep their policies unchanged, that is,

𝑣𝑖 (𝑠;𝜋∗) ≥ 𝑣𝑖 (𝑠;𝜋𝑖 , 𝜋−𝑖∗ ), (2)
where 𝜋−𝑖∗ denotes the joint policy of all the agents except agent 𝑖 ,
i.e., 𝜋−𝑖∗ := [𝜋1

∗ , . . . , 𝜋
𝑖−1
∗ , 𝜋𝑖+1

∗ , . . . , 𝜋𝑁∗ ].

4 KG-ENHANCED MARL APPROACH
In this section, we detail our proposal, KRAF, whose dataflow is
depicted in Fig. 2. In a nutshell, the available information about
ad slots1 is sent to the UKG. Then, the embeddings of the ad slot
and potential ads (both included in the UKG) are sent to the MARL
algorithm. Each learning agent selects a bidding value on behalf of
each advertiser and the ad with the highest bid is delivered. Finally,
based on the result of the auction and user behavior, a feedback
signal is provided to the MARL algorithm to enable learning.

4.1 UKG-Enriched State Representation
In this section, we detail how the embeddings of the UKG are gen-
erated and how they are used to predict affinity between users
and ads. We use the Knowledge Graph Attention Network (KGAT)
model [33], a hybrid approach combining Knowledge Graph Em-
bedding (KGE) [20] models and graph convolution networks (GCN)
[17]. KGE models parameterize entities and relations as vector
representations preserving the structural properties of the graph.
Additionally, the GCN propagates recursively the information of
the nodes. The embedding of each node is updated based on the
1Note that we use the terms “user” and “ad slot” interchangeably as users generate
the ad slots but user information (e.g., past user-ad interactions) may not be available
depending on the privacy setting.

6. Ad delivery

3. Ad slot info
sent to UKG

4.  Embeddings 
and link a�nities 
are sent to MARL 

Framework

1. Advertisers send 
budget constraints 
and objectives to 
MARL Framework

2. Ad slot is 
generated by user

7. Feedback based on auction result 
and user behavior

Auction

Learning Agent 1

Learning Agent 2

Learning Agent N

MARL algorithm

Advertiser 1

Advertiser 2

Advertiser N

... ...

5. Bidding values

Uni�ed Knowledge Graph (UKG)

Ad slot

Figure 2: KRAF architecture and dataflow.

embeddings of its neighbors, thus capturing high-order connectiv-
ity. This approach comprises three layers: embedding layer, GCN
propagation layer, and prediction layer.

4.1.1 Embedding Layer. In order to compute the initial vector rep-
resentations, we use TransR [20]. In contrast to other translation
KGE models, TransR supports 1-to-N relations that are present in
the bipartite graph. We define 𝑒ℎ, 𝑒𝜔 ∈ R𝑑 and 𝑒𝜇 ∈ R𝑘 as the
embeddings of the entities ℎ, 𝜔 , and 𝜇, respectively. The score (or
plausibility) of a triple (ℎ, 𝜇, 𝜔) is given by

𝑔(ℎ, 𝜇, 𝜔) = | |𝑊𝜇𝑒ℎ + 𝑒𝜇 −𝑊𝜇𝑒𝜔 | |22, (3)

where𝑊𝜇 ∈ R𝑘×𝑑 is the projection matrix of relation 𝜇. The train-
ing of TransR encourages valid triples against false ones by using
pairwise ranking loss:

LKGE =
∑︁

(ℎ,𝜇,𝜔,𝜔′) ∈T
− ln𝜎

(
𝑔(ℎ, 𝜇, 𝜔 ′) − 𝑔(ℎ, 𝜇, 𝜔)

)
, (4)

where 𝜎 (·) is the sigmoid function andT = {(ℎ, 𝜇, 𝜔, 𝜔 ′) | (ℎ, 𝜇, 𝜔) ∈
G, (ℎ, 𝜇, 𝜔 ′) ∉ G}, that is, (ℎ, 𝜇, 𝜔 ′) are false triples.

4.1.2 GCN Propagation Layer. The embedding propagation en-
abling high-order connectivity is performed using a GCN architec-
ture [17] enhanced with an attention mechanism [28]. We detail
now the architecture of a single layer that can be stacked to build a
multiple-layer network. We define Dℎ = {(ℎ, 𝜇, 𝜔) | (ℎ, 𝜇, 𝜔) ∈ G}
as the set of all the triples whereℎ is the head entity. The embedding
of the entity ℎ based on first-order connectivity is given by

𝑒Dℎ
=

∑︁
(ℎ,𝜇,𝜔) ∈Dℎ

𝛼 (ℎ, 𝜇, 𝜔)𝑒𝜔 , (5)

where 𝛼 (ℎ, 𝜇, 𝜔) is the normalized attention weight, indicating the
amount of information transmitted to ℎ from each of its neighbors.
The attention weight is defined as [33]:

𝛼 (ℎ, 𝜇, 𝜔) = (𝑊𝜇𝑒𝜔 )⊤ tanh
(
𝑊𝜇𝑒ℎ + 𝑒𝜇

)
. (6)

Note that this attention mechanism measures the affinity between
the translated ℎ and 𝜔 in the space of the relation 𝜇, and the tanh is
a non-linear activation function that increases the representation
ability of the model. We normalize the attention weights across all
the triples in Dℎ using a softmax function:

𝛼 (ℎ, 𝜇, 𝜔) = exp(𝛼 (ℎ, 𝜇, 𝜔))∑
(ℎ,𝜇′,𝜔′) ∈Dℎ

exp(𝛼 (ℎ, 𝜇 ′, 𝜔 ′)) . (7)
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Finally, for a node ℎ, we aggregate the embedding 𝑒ℎ computed
by the KGE model in the first place and 𝑒Dℎ

, which considers the
information propagation of the first-order connectivity and indi-
cates how to weight the information from each neighbor (attention
mechanism). The new representation of the entity ℎ is given by
𝑒
(1)
ℎ

= 𝑓 (𝑒ℎ + 𝑒Dℎ
). Specifically, the information aggregation func-

tion is given by [33]:

𝑓 (𝑒ℎ, 𝑒Dℎ
) = LeakyReLU

(
𝑊1 (𝑒ℎ + 𝑒Dℎ

)
)
+ (8)

LeakyReLU
(
𝑊2 (𝑒ℎ ⊙ 𝑒Dℎ

)
)
,

where𝑊1,𝑊2 ∈ R𝑑′×𝑑 are trainable weights used to obtain use-
ful information to propagate, 𝑑 ′ is the transformation size, and ⊙
indicates element-wise product.

4.1.3 Multi-Layer Network. By stacking several layers, we can
build a multi-layer network to propagate the information a number
of steps forward. Specifically, the representation of the entity ℎ at
layer 𝑙 is

𝑒
(𝑙)
ℎ

= 𝑓 (𝑒 (𝑙−1)
ℎ

+ 𝑒
(𝑙−1)
Dℎ

), (9)
where

𝑒
(𝑙−1)
Dℎ

=
∑︁

(ℎ,𝜇,𝜔) ∈Dℎ

𝛼 (ℎ, 𝜇, 𝜔)𝑒 (𝑙−1)
𝜔 . (10)

Note that we consider 𝑒 (0)
ℎ

as the initial vector representation given
by the embedding layer, i.e., 𝑒ℎ .

4.1.4 User-ad affinity prediction layer. Considering a multi-layer
network with 𝐿 layers, we obtain a representation of each user and
ad at each layer. We consider a layer aggregation mechanism [39] in
order to concatenate the representation of an entity at each of the
𝐿 layers. For instance, the representation of a user 𝑢 is computed as

𝑒∗𝑢 = concat
{
𝑒0
𝑢 , 𝑒

1
𝑢 , . . . , 𝑒

𝐿
𝑢

}
. (11)

Finally, the affinity between a user 𝑢 and an ad 𝑧 is given by the
inner product of their representations, i.e.,

𝛿𝑢,𝑧 = 𝑒∗𝑢
⊤
𝑒∗𝑧 , (12)

where 𝑒∗𝑧 is the layer aggregation representation of the ad 𝑧 com-
puted as in eq. (11).

4.1.5 Training mechanism. In order to train the multi-layer net-
work, we rely on the BPR loss, defined as [26]:

LGCN =
∑︁

(𝑢,𝑧,𝑧′) ∈O
− ln𝜎

(
𝛿𝑢,𝑧 − 𝛿𝑢,𝑧′

)
, (13)

where O =
{
(𝑢, 𝑧, 𝑧′) | (𝑢, 𝑧) ∈ I+, (𝑢, 𝑧′) ∈ I−} is the training set,

I+ is the set of positive user-ad interactions, and I− is the set of
negative or unobserved interactions. Finally, we define the global
loss as follows [33]:

L = LKGE + LGCN + 𝜆 | |𝜃 | |22, (14)

where 𝜃 =

{
𝐸,𝑊𝜇 ∀𝜇 ∈ M,𝑊

(𝑙)
1 ,𝑊

(𝑙)
2 ∀𝑙 ∈ {1, . . . , 𝐿}

}
is the set of

model parameters, 𝐸 is the embedding matrix of all the entities in
the graph, and 𝜆 is the L2 regularization parameter.

The embedding representations of users and ads computed in
eq. (11) and the affinity obtained in eq. (12) are used to define
the state of the MARL algorithm as described in the next section.

Note that both embeddings and affinity should be computed before
training the MARL algorithm by minimizing eq. (14).

4.2 Multi-agent Reinforcement Learning for
budget allocation

In this section, we detail the design of the MARL algorithm in-
tegrated into the proposed advertising framework. Each learning
agent makes decisions on behalf of each advertiser. All the agents
receive the same bid request and have to select a bidding value.
Next, we define states, actions, and the reward signal.

State.The observation of the state of agent 𝑖 at time 𝑡 is defined as
𝑜𝑖𝑡 = [𝑏𝑖𝑡 , 𝑏𝑖𝑡 , 𝑒∗𝑖 , 𝑒

∗
𝑢𝑡
, 𝛿𝑖𝑡 ], where 𝑏𝑖𝑡 is the current budget of the agent,

𝑏𝑖𝑡 indicates its expected budget, 𝑒∗𝑖 is the embedding representation
of the advertiser 𝑖 , 𝑒∗𝑢𝑡 is the embedding representation of the user
𝑢𝑡 at time 𝑡 , and 𝛿𝑖𝑡 indicates (with a little abuse of the notation)
the affinity between the advertiser 𝑖 and the user 𝑢𝑡 at time 𝑡 . We
assume that each advertiser only has one ad to deliver and therefore
the index 𝑖 corresponds to only one ad 𝑧. We use 𝑏𝑖𝑡 as a guideline
of the budget that the agent should desirably have at time 𝑡 . We
found experimentally that this input stabilizes the convergence
avoiding non-stationary situations. Also, we prevent the agents
from finding some undesirable equilibrium points, such as bidding
very high at the beginning of the day and running out of budget
very early, or the opposite, leading to suboptimal solutions. We
define the expected budget of agent 𝑖 at time 𝑡 as

𝑏𝑖𝑡 = 𝐵𝑖0 −
(𝐵𝑖0 − 𝐵𝑖

𝑇
)𝑡

𝑇
, (15)

where 𝐵𝑖0 is the initial budget of agent 𝑖 and 𝐵𝑖
𝑇
indicates the de-

sired final budget of the agent at the end of the day. Generally,
we configure 𝐵𝑖

𝑇
= 0 as we intend the agent to spend its whole

budget during the day. However, with 𝐵𝑖
𝑇

> 0 other equilibrium
points can be found. Note that our learning agents not only use the
observations 𝑜𝑖𝑡 but also the coordination signals defined in Sec. 4.3.
These coordination signals are used to share information among
agents to allow convergence without increasing the computational
complexity.

State transition. The expected budget 𝑏𝑖𝑡 is updated according
to eq. (15). The embeddings of ads and users as well as the affinity
are given by the UKG module, and the current budget is updated
according to the second price auction dynamics2. That is, when the
agent 𝑖 wins the auction 𝑎𝑖𝑡 > 𝑎

𝑗
𝑡 ∀𝑗 ≠ 𝑖 , its budget is updated as

𝑏𝑖
𝑡+1 = 𝑏𝑖𝑡 − 𝑀𝑃 , where 𝑀𝑃 is the market price (the value of the
second-highest bid). The budget of the rest of the bidders 𝑏 𝑗 ∀𝑗 ≠ 𝑖

remains the same for the next auction at 𝑡 + 1.
Action. We define the action for agent 𝑖 at time 𝑡 as 𝑎𝑖𝑡 ∈

[𝛽min, 𝛽max], where 𝛽min and 𝛽max are the minimum and maxi-
mum allowable bids, respectively.

Reward. The design of the reward function is crucial to achiev-
ing convergence and finding optimal equilibrium points among
agents. It should encode two (opposed) metrics: the ROAS of the
advertisers and the total platform revenue. Moreover, our problem
presents some difficulties to achieve convergence in the learning
2We focus on second price auctions as they are dominant in the advertising ecosystem.
However, first price auctions can also be considered by using the highest bid as the
market price.
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actor

value

critic

Figure 3: Actor-critic architecture of learning agent 𝑖 including
coordination signals.

phase. First, the metrics of interest for advertisers (e.g., click or
purchase) are usually very sparse. Second, allocating the budget
throughout the day (𝑇 decision periods) is a difficult task to learn
due to the usually very large value of 𝑇 .

To alleviate these issues we introduce the concept of reward
shaping [14]. The main idea is to replace the sparse reward signal
with a dense reward signal incorporating some domain knowledge
in a supervised way. Hence, when the agents succeed in maximizing
the dense reward signal, they are also obtaining useful knowledge
and getting closer to their end goal. The reward for agent 𝑖 at time
𝑡 is given by two terms:

𝑟𝑖,𝑡 = 𝑟auct𝑖,𝑡 + 𝛽 · 𝑟budget
𝑖,𝑡

, (16)

where 𝛽 is a parameter weighting the importance of each term. The
first term 𝑟auct

𝑖,𝑡
only takes a positive value for the winning agent:

𝑟auct𝑖,𝑡 =

{
𝑟bid
𝑖,𝑡

, 𝑎𝑖𝑡 > 𝑎
𝑗
𝑡 ∀𝑗 ≠ 𝑖

0, otherwise,
(17)

where 𝑟bids
𝑖,𝑡

return a high reward when there is an interaction of
the interest for the advertiser and otherwise returns a value based
on the affinity in order to mitigate the effect of sparsity, i.e.:

𝑟bid𝑖,𝑡 =

{
1, if user-ad interaction fromM𝑖

F (𝛿𝑖𝑡 ), otherwise (18)

where M𝑖 ⊆ M 𝑗 is the set interactions (e.g., click, visualization,
purchase) that the agent 𝑖 wants to maximize and F (·) ↦→ [0, 1] is
a function that incentives the winning of users with high affinity.
Specifically, we consider F (𝛿𝑖 ) = 𝜂𝛿

𝑖
rank , where 𝛿𝑖rank ∈ [0, . . . 𝑁−1]

indicates the ranking of user 𝑖 based on the affinity. For example,
when the user 𝑖 has the highest affinity 𝛿𝑖rank = 0; if it has lowest
affinity 𝛿𝑖rank = 𝑁 − 1.

The goal of the second term, 𝑟budget
𝑖,𝑡

, is to make the agents spend
the full budget throughout the day but not run out of it too early.
Based on the shaped reward principle, we distribute this penalty
along the day (instead of penalizing the agent at the end of each
epoch), encouraging agents to keep their current budget 𝑏𝑖𝑡 close
to their respective expected budget 𝑏𝑖𝑡 , that is,

𝑟
budget
𝑖,𝑡

= −
��𝑏𝑖𝑡 − 𝑏𝑖𝑡

�� . (19)

4.3 Large-Scale Multi-Agent System Design
Most MARL methods are limited typically to a small number of
agents. When the number of learning agents is very large, the

learning process becomes intractable as the computational com-
plexity grows exponentially with the number of agents (curse of
dimensionality).

As an example, the well-known MADDPG algorithm uses an
actor-critic architecture based on the principle of centralized learn-
ing and decentralized execution [21]. Thus, the actor (or policy as
defined in Sec. 3.2) selects an action based on local observations, i.e.,
𝑎𝑖𝑡 = 𝜋𝑖 (𝑜𝑖𝑡 ). Then, the critic approximates the Q-value for a given
action-state pair, i.e., 𝑄 (s𝑡 , a𝑡 ). Note that the input of the critic is
the system state and the joint action (all agents). Therefore, this
technique can only be applied with a fixed number of agents (which
may vary in our setting) and with limited scalability.

There are a few works addressing the scalability problem by
including ideas from Mean Field Theory [5, 40]. In these works,
the interactions among the population of agents are approximated
by those between a single agent and the average effect from the
overall population.

However, some of the assumptions made in these previous works
do not hold in our problem. First, they consider discrete action
spaces, while in our case the bids are continuous and their dis-
cretization may limit the expressivity of our solution. Second, the
average effect of the population (e.g., average bid value, average
affinity) is not very informative in our case, hindering the coordina-
tion among learning agents and convergence. Based on these ideas,
we design two coordination signals based on domain knowledge of
this setting. We define the critic and actor coordination signals as:

𝑐critic𝑡 =
(
𝛿max
𝑡 , 𝛿∗𝑡 , 𝑎

max
𝑡 , 𝑀𝑃

)
, 𝑐actor𝑡 =

(
𝛿max
𝑡

)
, (20)

where 𝛿max
𝑡 is the maximum affinity in the auction time 𝑡 , 𝛿∗𝑡 is

the affinity of the winner of the auction at time 𝑡 , and 𝑎max
𝑡 is the

maximum bid. Note that all the values in 𝑐critic𝑡 (except 𝛿max
𝑡 ) can

only be computed after the agents select an action, making this
signal only suitable for training. Conversely, 𝑐actor𝑡 only depends
on the state of the game s𝑡 and therefore can be used to feed the
actor. These coordination signals encode the state of the game
more effectively than the average state or action of the population,
avoiding non-stationarity and enabling convergence.

Let us formally define the actor and critic functions of our solu-
tion. We define the actor function as 𝜋𝑖 (𝑜𝑖𝑡 , 𝑐actor𝑡 ) : S𝑖 × Cactor ↦→
A𝑖 , where Cactor is the set of possible values of the actor coordina-
tion signal. The critic function, which returns the Q value, is given
by𝑄𝑖 (𝑜𝑖𝑡 , 𝑎𝑖𝑡 , 𝑐critic𝑡 ) : S𝑖 ×A𝑖 ×Ccritic ↦→ R, where Ccritic is the set
of possible values of the critic coordination signal. Fig. 3 depicts
the architecture of a learning agent. Note that the dimensionality
of the critic’s input for a standard MARL solution such as [21] is
𝑑𝑖𝑚{𝑜𝑖 } · 𝑁 . The dependency with 𝑁 has serious implications on
the computational complexity of the function approximator of the
critic. In contrast, the dimensionality of the critic’s input of our
proposal is 𝑑𝑖𝑚{𝑜𝑖 } + 𝑑𝑖𝑚{Ccritic}, which is independent of 𝑁 .

Finally, both actor and critic are shared across all learning agents.
This is feasible because all specific information about the agent
(e.g., current budget) is encoded in the state. This strategy is used
in previous works speeding up learning and reducing the amount
of data needed for convergence [18, 40]. The details of the imple-
mentation of the actor and critic as well as the training process are
explained in Sec. 5.2.
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5 EVALUATION
5.1 Datasets and metrics
For evaluation, there are no publicly available advertising datasets
that fit our purpose because they are anonymized and information
about ads is not available (e.g., iPinYou [43], Taobao dataset [22]),
preventing them to be linked with a KG. For that reason, we rely
on recommender system datasets to evaluate our framework. We
consider the items to recommend as ads and a like/dislike from a
user to an item is considered as a click/no click from a user to an
ad. We follow the setup in [33] on the following datasets:
• Amazon-book3 is based on a large corpus of product reviews
filtered specifically for books.

• Last-FM4 is a music listening dataset collected between January
and June 2015, where the items are artists, and edges represent
that a user has listened to an artist.

• Yelp20185 is based on the Yelp challenge from 2018, where the
items are restaurants and edges are based on user reviews.
All of these datasets have been filtered down to their 10-core,

ensuring that all users and items have at least 10 connections. After
this, they were each joined with a KG. In the case of Amazon-book
and Last-FM, this is based on the KB4Rec dataset [45] connecting
these datasets with the Freebase KG. For Yelp2018, the KG is in-
stead based on metadata about local businesses such as locations,
categories, and other attributes. Note that, due to the nature of
these datasets, user attributes are not considered in our evaluation.
Entities with fewer than 10 connections were also dropped from
the KGs, as well as relations with fewer than 50 occurrences overall.

To train the embedding model, we use 70% of the known user-
item interactions. After this, we filter for items with a high degree:
at least 100 for Amazon-book, 150 for Yelp2018, and 200 for Last-FM.
We split these items into groups of 25 for training and evaluating
the MARL system. For each group of 25, we fetch all the users that
interacted with any of these items and run a series of ad auctions.
90% of these groups are used for training the RL agents, with 10%
reserved for evaluation. The evaluation is based on four metrics:
• ROAS (Return On Ad Spend) measures the revenue over the
cost. We are interested in measuring the global ROAS (across all
the advertisers) to compare different strategies. We consider that
the revenue is equal to 1 when the user clicks and 0 otherwise.
The cost is price paid by the advertisers to deliver the ads (the
second highest bid) taken from [𝛽min, 𝛽max]. Thus, the ROAS is
computed as ROAS = (Total # of clicks)/(Total budget spent)

• # clicks is the accumulated number of click interactions for all
the advertisers during one day.

• Fairness measures the similarity on the ROAS across advertises.
We use the Jain’s fairness index [15] across the individual ROAS
of the advertisers, that is,

Fairness =

(∑𝑁
𝑖=1 ROAS𝑖

)2

𝑁
∑𝑁
𝑖=1 ROAS

2
𝑖

, (21)

where ROAS𝑖 is the ROAS of advertiser 𝑖 . Our objective is to
measure inequalities among the advertisers as their ROAS can

3https://jmcauley.ucsd.edu/data/amazon/
4https://grouplens.org/datasets/hetrec-2011/
5https://www.yelp.com/dataset/

change depending on several factors such as the affinity and the
initial budget. This fairness metric takes values between 1/𝑁
(the highest inequality) and 1 (same ROAS for all the advertisers)

• Platform revenue measures the total amount of budget spent
by the advertisers on the platform. As this metric can vary a lot
depending on the initial budget of the advertisers, we normalize
dividing by the aggregated initial budget of all the advertisers.

5.2 Implementation Details
Auctions. Our framework computes the bidding value of all the
agents and then a second price auction is performed. The advertiser
with the highest bid pays the market price (second highest bid) and
delivers the ad. As our approach computes the bidding value of all
the agents, there is no need for external bidding information for the
evaluation (e.g., from a dataset). We consider𝑁 = 25 advertisers and
𝑇 = 1000 auctions per day. The bidding values are normalized so
that 𝛽min = 0 and 𝛽max = 1 monetary units. The initial budget of the
advertisers is drawn from a normal distribution with mean 14 and a
standard deviation 5 monetary units. Thus, the advertisers have to
allocate the budget in a smart way to avoid running out of budget
before the end of each day.We consider clicks to be the interaction of
interest for all the advertisers, i.e., M𝑖 = {click} for 0 ≤ 𝑖 ≤ 𝑁 − 1.

UKG embeddings and affinity. To generate user and item em-
beddings from the UKG, we train the model defined in Sec. 4.1 with
the hyperparameters suggested in [33]. This model is trained before
the MARL algorithm to obtain the embeddings and affinity needed
to define the MARL state. For real deployments, the model should
be trained regularly in background to benefit from the new informa-
tion added to the UKG. The embedding size is 64 and we consider
three message-passing steps with 64, 32, and 16 dimensions, that
concatenated according to eq. (11) form the final embeddings of 176
dimensions. Dropout is applied at each message-passing step at a
rate of 0.1, and L2 regularization of 10−5 is used on the embeddings.

MARL algorithm. We design the learning agents based on
the Twin Delayed Deep Deterministic Policy Gradient (TD3) [8]
with an actor-critic architecture and off-policy learning. For each
agent, both actor and critic have the same neural network (NN)
architecture with 4 hidden layers, (64, 128, 128, 64) number of units,
respectively, and ReLU activation. The algorithm includes a twin
critic and takes the smallest clipped value of the two critics. The
actor training is delayed every two updates and some noise is added
to the target actor for regularization. We set the learning rate to
10−4 and 𝛽 = 0.1.

5.3 Performance evaluation
In this section, we evaluate the performance of our proposal and
compare it against several baselines. We perform an ablation study
to evaluate the contribution to the final performance of the two
main components in KRAF: the UKG and the coordination strategy.
In addition, we implement a reward strategy from the literature
and a common strategy in advertising based on pCTR. In detail, we
evaluate the following solutions:
• Random policy. Advertisers select a random bid in [𝛽min, 𝛽max]
at each time 𝑡 . This policy is used as baseline for comparison.

• Affinity-based Policy (ABP). A common approach in online
advertising is to select the bid for each advertiser proportional

https://jmcauley.ucsd.edu/data/amazon/
https://grouplens.org/datasets/hetrec-2011/
https://www.yelp.com/dataset/
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Dataset Method ROAS # clicks Fairness Platf. rev.

Books

Random 0.086 29.5 0.672 1
ABP 0.355 119.1 0.898 0.984
TRCA𝜏=1 0.335 114.5 0.690 1
TRCA𝜏=103 0.168 56.8 0.637 0.988
KRAF-UKG 0.186 62.5 0.569 0.980
KRAF-coord 0.415 141.7 0.763 0.999
KRAF 0.498 168.4 0.857 0.999

Last-FM

Random 0.101 34.4 0.823 1
ABP 0.444 148.5 0.941 0.980
TRCA𝜏=1 0.573 195.3 0.896 0.998
TRCA𝜏=103 0.206 70.2 0.769 0.999
KRAF-UKG 0.212 72.4 0.977 0.999
KRAF-coord 0.675 230.2 0.905 1
KRAF 0.808 275.8 0.892 0.999

Yelp2018

Random 0.091 31.1 0.914 1
ABP 0.214 72.6 0.750 0.993
TRCA𝜏=1 0.340 114.1 0.912 0.982
TRCA𝜏=103 0.242 81.7 0.935 0.987
KRAF-UKG 0.311 106.0 0.721 0.998
KRAF-coord 0.647 220.3 0.948 0.998
KRAF 0.690 235.4 0.985 0.999

Table 1: Performance comparison.

to its pCTR. Using affinity as a proxy, the advertisers select a bid
proportional to their affinity (eq. (12)).

• TRCA [37]. We adopt a temperature regularized credit assign-
ment (TRCA) to distribute the reward among the agents. This
strategy distributes the reward among the agents according to
their contribution to the auction using a softmax function with
temperature parameter 𝜏 . To integrate this strategy in KRAF, we
distribute 𝑟bid

𝑖,𝑡
(eq. (18)) among all the agents based on TRCA (see

eq. (4) in [37]). Then, the second term in eq. (16) is added. For a
fair comparison, the UKG and coordination signals are also used.

• KRAF-UKG. We disable the use of the UKG in our proposal, using
only the bipartite graph to compute the embeddings and the link
prediction. For that purpose, we compute the embeddings using
Neural Graph Collaborative Filtering (NGCF) [34]. Our goal is to
evaluate the impact of KG on the final performance.

• KRAF-coord. We disable the coordination signals for both the
actor and the critic (i.e., 𝑐actor𝑡 and 𝑐critic𝑡 ). The objective is to
evaluate their the impact on the final performance.

Table 1 shows the performance comparison results where KRAF
consistently obtains the best performance in terms of ROAS and
number of clicks. We observe that the use of the UKG brings a
remarkable performance boost. On average, our proposal improves
the ROAS by 190.2% and the number of clicks by 190.8% across the
datasets with respect to the benchmark with the KG disabled. This
highlights the impact of KG techniques on the final performance
compared to other techniques that do not rely on high-order con-
nectivity information among entities. Note that Amazon-book and
Last-fm rely on Freebase KG, while Yelp2018 uses the metadata in
the dataset as KG, pointing out the flexibility of this technique to
different topologies. On the other hand, the impact of the coordina-
tion strategy is smaller, showing an improvement of 15.4% in the
ROAS and 15.2% in the number of clicks.

For the TRCA evaluation, we consider two cases: 𝑖) The distribu-
tion of the reward among agents is proportional to their respective
bid value following a softmax function with temperature 𝜏 = 1; 𝑖𝑖)
The reward is distributed equally among all the agents indepen-
dently of their action (𝜏 = 103), i.e., a pure cooperative setting. We
observe that TRCA𝜏=103 obtains consistently a lower performance
as the reward distribution does not incentive the learning of better
strategies. Although TRCA𝜏=1 works better, it encourages agents
that are unlikely to get a click to bid higher to get a better reward.
This favors the competition but shows a lower performance in our
setting. Conversely, KRAF assigns a positive reward only to the
winner agents, encouraging competition in a more efficient manner.
Specifically, KRAF exhibit a 64.2% and 224.59% improvement of the
ROAS with respect to TRCA𝜏=1 and TRCA𝜏=103 , respectively.

The fairness metric measures the similarity of the ROAS across
the agents, helping us to identify inequalities. For example, advertis-
ers with lower affinity can be excluded from the auctions to increase
the overall performance in the short term. However, this can be
counterproductive for the advertising platforms in long term, as
the number of advertisers can decrease over time (due to their poor
performance), decreasing the competition and the overall revenue.
We observe in Table 1 that KRAF exhibits fairness higher than 0.85
in all the cases and the highest value for Yelp2018 dataset.

Finally, note that all the MARL-based solutions expend the whole
budget at the end of the day thanks to the reward signal 𝑟budget𝑡

(eq. (19)). This avoids collusion behavior on the agent policies by
which they decrease the average bid value to increase the ROAS,
harming the platform revenue (also reported in [37]).

Fig. 4 shows the average of the accumulated clicks at time 𝑡 and
the 10th and 85th percentiles with a colored shadow. The average
and percentiles are computed over 10 consecutive days using data
from the test set as in Table 1. We can observe in Fig. 4 how the
budget is allocated over time by the different strategies. The curve of
the strategies using on MARL (i.e. KRAF and TRCA) is almost linear,
indicating that the clicks are evenly allocated throughout the day.
This is a desirable property since it allows advertisers to bid for ad
slots independently of the moment of the day, and stabilize the cost
of the ad slots (e.g., avoiding higher bids when the advertisers have
more budget). Conversely, we observe that ABP performs very close
to the KRAF during the first third of the day with Amazon-book
and Last-fm, but then the curve flattens because some of the agents
run out of budget. This shows that a policy based on the pCTR
(affinity) alone is working in a one-step prediction fashion without
foreseeing the long-term results, and farsighted policies like MARL
are much needed here for the constrained budget allocation task.
Note that the affinity for ABP is computed using the UKG, and
for this reason in some cases it outperforms KRAF-UKG. Similarly,
although KRAF-coord is very close to KRAF, it tends to flatten at
the end of the day. This highlights the impact of the coordination
strategy in KRAF that allows the agents to learn better farsighted
budget allocation policies.

6 INDUSTRIAL USE CASES & ADS PRIVACY
In this section, we detail how KRAF can be adapted to different
settings related to user privacy protection in advertising services,
including contextual advertising, cohort-based advertising, and
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Figure 4: Number of clicks through one epoch for the different
strategies and datasets.

interest-based advertising. We also illustrate how our advertising
framework can be easily adapted to new advertising markets.

6.1 Contextual Advertising
A recent movement has appeared to regulate and restrict user track-
ing in online advertising, especially limiting the usage of 3rd party
cookies, which are expected to be disabled permanently soon [2].
Contextual advertising is an approach that only uses the content
the user is consuming when the ad slot is generated to recommend
ads. Without using users’ past behavioral history, users’ privacy is
improved but sacrificing service performance [13].

KRAF can be integrated into contextual advertising to enhance
the richness of the information. We represent all the contextual tags
as graph entities connected to the user who generated the ad slot.
As all these tags have a corresponding entity in the KG, users and
ads are indirectly connected through the UKG even when there is
no past behavioral information about the users. Thus, via leveraging
high-order connectivity, the advertising platform can provide high-
quality recommendations. For instance, consider a user browsing
the website of the Oscar Awards from which we extract contextual
features. Some contextual features may be obvious like “movies”,
but we can also extract the latent concept of “luxury”. Based on the
latter, an expensive perfume ad could be recommended, relying on
non-trivial relations between "luxury" and the perfume.

6.2 Cohort-based Advertising
Another approach to increase user privacy attempted by some lead-
ing companies is cohort-based advertising [36]. It relies on creating
cohorts (or groups) of users with similar interests (e.g., behavioral
data). Thus, when generating ad slots, users only reveal their co-
hort instead of behavioral or sensitive information. Cohort-based
advertising presents some technical challenges as user clustering
needs to be performed in a distributed manner, and it has a trade-off
between user anonymity and ad serving performance.

To boost the performance, we could employ KRAF by considering
cohorts of users instead of individual users in the UKG and record

cohort-ads interactions. This will decrease the sparsity of our graph
as a cohort will havemore interaction (e.g., clicks) than an individual
user, and increase the accuracy of predicted affinities. Similarly, we
could define richer types of relations, for instance, different degrees
of affinity relations based on the number of clicks. Thus, we increase
the expressiveness of the model.

6.3 Interest-Based Advertising (IBA)
Interest-Based Advertising (IBA) has been recently proposed as
an alternative to cohort-based advertising [9]. In IBA, at every
epoch (e.g., one week) users generate a list of topics based on their
behaviors (e.g., website visits or installed apps). A topic is a human-
readable tag taken from the topics taxonomy set [9]. When a user
generates an ad slot, a subset of the topics is sent for ad selection.

In our framework, each topic can be modeled as a graph entity
connected to the UKG. When a user generates an ad slot, her past
interactions are not available (the user is anonymous), but she will
be connected to her topics and therefore integrated into the UKG.
Although storing interaction with ads of individual users is not
an option, we can store interactions between anonymous users’
topics and ads, and thus, learn the high-order connectivity relations
among them. Moreover, similar to cohort-based advertising, it can
be beneficial to include different types of relations based on affinity

6.4 New Advertising Markets
New advertising markets are emerging in recent years and adapt-
ability is a key factor for advertising platforms. Autonomous Ad-
vertising is an example, where companies offer free rides in au-
tonomous cars in exchange for showing ads during the ride [7, 11].
In that case, assuming that we do not have previous information
about the user (e.g., from the app to request the ride), other informa-
tion can be added to the graph such as the origin and destination of
the ride, the time, the day of the week, and so on. These graph enti-
ties can improve the targeting of the ads by providing geolocated
advertisement adapted to the time and context of the users.

It is important to note that the different changes we describe in
this section are related to the input graph. The following stages
(i.e., embedding computation, affinity prediction, and bidding com-
ponents) are not affected by introducing diverse and non-structure
information, thus illustrating the flexibility of the advertising plat-
form in very diverse scenarios.

7 CONCLUSION
In this work, we presented KRAF, a novel advertising frameworks
that combines Knowledge Graph (KG) techniques with Multi-Agent
Reinforcement Learning (MARL). It tackles the real-time bidding
problem in advertising with heterogeneous and limited input in-
formation. We model the input information as a graph, which is
integrated into a KG to leverage high-order connectivity. The em-
beddings of the graph nodes are used to define the states of the
MARL algorithm that learns efficient bidding strategies for the ad-
vertisers using a novel coordination strategy among agents. We
evaluated our advertising framework on real-world datasets assess-
ing the impact of each of its components. Remarkably, KRAF is able
to deal with different levels of user privacy and the advent of new
advertising markets with more heterogeneous data.
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