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Abstract—Virtualized base stations (vBS) can be implemented in diverse commodity platforms and are expected to bring
unprecedented operational flexibility and cost efficiency to the next generation of cellular networks. However, their widespread adoption
is hampered by their complex configuration options that affect in a non-traditional fashion both their performance and their power
consumption. Following an in-depth experimental analysis in a bespoke testbed, we characterize the vBS power consumption profile
and reveal previously unknown couplings between their various control knobs. Motivated by these findings, we develop a Bayesian
learning framework for the orchestration of vBSs and design two novel algorithms: (i) BP-vRAN, which employs online learning to
balance the vBS performance and energy consumption, and (ii) SBP-vRAN, which augments our optimization approach with safe
controls that maximize performance while respecting hard power constraints. We show that our approaches are data-efficient, i.e.,
converge an order of magnitude faster than state-of-the-art Deep Reinforcement Learning methods, and achieve optimal performance.
We demonstrate the efficacy of these solutions in an experimental prototype using real traffic traces.
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1 INTRODUCTION

Virtualization is considered one of the key approaches for
bringing cellular networks up to speed with the demanding
services they aspire to offer to users [1]. The latest frontier
in this endeavor is the development of virtualized Radio
Access Networks (vRAN) where legacy base stations (BSs)
are replaced by softwarized stacks such as those developed
by srsRAN [2] and OpenAirInterface (OAI) [3]. These novel
BSs are fully-configurable and can be deployed in differ-
ent platforms ranging from commodity servers and small
embedded devices to moving nodes such as drones [4]. This
RAN transformation constitutes a paradigm shift for cellular
networks and is expected to offer the much-needed perfor-
mance flexibility, facilitate the necessary network densifi-
cation, and reduce significantly their capital and operating
expenses [5]. Hence, it is not surprising that we see today
numerous industry efforts aiming to build such BS software
stacks [2], design fully-open RAN architectures [6], and even
conduct extensive field trials [7].

1.1 The problem

Nevertheless, the advent of vRANs raises novel technical
challenges since the virtualized base stations (vBSs) differ
significantly from their hardware-based legacy BSs. On
the one hand, Open RAN solutions (led by the O-RAN
alliance) enable vBS to change in real-time a variety of
different operation parameters, such as transmission power
and modulation schemes, in order to adapt to the volatile
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network conditions and dynamic user needs. On the other
hand, though this certainly provides network operators an
unprecedented level of flexibility, it comes at the cost of less
predictable performance due to the complex couplings be-
tween the high-dimensional space of tunable control knobs
and the resulting performance, as we reveal in Sec. 3. The
latter is crucial for economic reasons, especially in light of
the increasing network densification; but also because vBSs
are often expected to operate under tight energy budgets [8]
– consider for instance vBS that are supported with batter-
ies or Power-over-Ethernet (PoE) lines. Therefore, existing
resource control policies run the risk of under-utilizing
this new type of BSs, or rendering vRANs economically
unsustainable. It becomes, therefore, clear that in order to
unleash the full potential of vRANs we need to answer two
key questions:

(i) What is the performance and power consumption charac-
teristics of virtualized BSs?

(ii) How can we optimize their operation using an adaptive
and platform-oblivious approach?

In this paper we tackle these questions following a
detailed experimental and analytical methodology.

1.2 Our solution

We start by studying the vBSs operation using different
hosting platforms and usage scenarios in a customized
wireless testbed. Our results shed light on the relation-
ship between performance (throughput), power consump-
tion, and vBS controls such as the modulation and cod-
ing schemes (MCS) and spectrum allocation. For instance,
we find that the baseband unit (BBU) consumes power
comparable to wireless transmissions, and we observe the
vBS power consumption and effective throughput being
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affected by the configurations in a non-linear and non-
monotonic fashion. These results depend heavily on the
hosting platform and underline the difficulties in optimizing
the vBS operation. Moreover, we observe that the uplink
(UL)-related computations of the vBS stack consume more
power and are more sensitive to MCS and SNR variations,
than the respective downlink (DL) computations; a finding
attributed to the heavier UL decoding. Besides, we measure
the vBS power consumption for concurrent UL and DL
processing and find it significantly smaller than the total
consumption of these operations when executed separately
(only UL or only DL). These findings are particularly im-
portant since uplink transmissions are needed to support
the ever-growing user traffic. Our analysis is centered on
energy since it is the bottleneck vBS resource that affects
both their computations and transmissions, and which, if
not properly controlled, will induce prohibitive costs and
environmental consequences as cellular networks become
even more pervasive [9].

The take-away message from these extensive measure-
ments (presented in Sec. 3) is that, unlike legacy BSs, virtual-
ized BSs have a complex, poly-parametric, and platform-
dependent performance and power consumption profile;
and this renders traditional control policies inefficient for
their management. In order to overcome this obstacle, we
propose and evaluate a novel machine learning framework
that learns on-the-fly the vBS operational profiles and selects
their optimal configuration based on the network needs and
power availability or constraints. In particular, we formulate
two energy-aware vBS control problems and design learning
algorithms to solve them in a robust fashion: (i) BP-vRAN
(Bayesian optimization for Power consumption in vRANs),
which finds a tunable trade-off between performance and
power consumption; and (ii) SBP-vRAN (Safe Bayesian
optimization for Power consumption in vRANs), which
maximizes the vBS performance subject to hard constraints
on power consumption. The former allows operators to
balance performance and power expenses, while the latter
is crucial for vBS running on power-constrained platforms,
e.g., Power-over-Ethernet cells.

Our algorithms are founded on Bayesian optimization
theory [10] and Gaussian Processes (GPs) [11]. These tools
are appropriate for our problems because, as we show in
this paper, they are remarkably data-efficient, which is an im-
portant requirement in our case given the high-dimensional
nature of our context-action space. The GPs model the
behavior of the vBS in terms of performance and power
consumption, using measurements that are collected in run-
time. Accordingly, we use a contextual bandit framework to
explore the space of vBS configurations and exploit the best
ones for each context. For the latter, we use the average
UL/DL traffic load and SNR values, which we measure
over certain time windows as these are determined by the
pertinent 3GPP O-RAN specification [6]. The outcome is a
non-parametric algorithmic framework that makes minimal
assumptions about the system, adapts to user needs and net-
work conditions, and provably maximizes the throughput of
the system. Furthermore, drawing ideas from safe Bayesian
optimization [12], [13], the SBP-vRAN algorithm ensures the
vBS power constraints are not violated during exploration,
hence enables the vBS deployment on energy-constrained

platforms. By its design, this framework outperforms other
approaches requiring knowledge of the vBS functions [14]
or offline data to approximate them [15], and adaptive
techniques that do not offer performance guarantees or rely
on strict system modeling assumptions [16], [17] (see Sec. 2).

Finally, we perform an extensive evaluation in a cus-
tomized testbed based on srsRAN [2], and using several
tools to measure in real time the vBS power consumption.
This is an important step in our study as it allows us
to assess the practical efficacy of the proposed learning
algorithms. Indeed, we verified that both solutions converge
to the optimal vBS configuration in a variety of scenarios. To
that end, we also proposed and evaluated several practical
enhancements that expedite the algorithms’ convergence.
Using real traffic traces, we show, step-by-step, how our
framework explores the configurations, and how it refrains
from violating the power constraints when necessary. We
also benchmark our solution with a state-of-the-art Rein-
forcement Learning (RL) solution. Namely, we implement
a Deep Deterministic Policy Gradient (DDPG) algorithm
using an actor-critic neural network (NN) architecture [18],
and adapted to our contextual bandit problem. We find that
our framework is more data-efficient than such state-of-the-
art RL approaches which require orders of magnitude more
measurements (hence, also more time) to train the NNs.
We believe such experimental comparisons contribute to the
ongoing discussion about which AI/ML techniques can in
practice solve resource orchestration problems in cellular
networks.

1.3 Contributions and paper organization
Motivated by the increasing importance and fast-paced
deployment of virtualized base stations [2], [6], [7], we
revisit the problem of energy-aware resource orchestration
in cellular networks. Using a hybrid experimental and the-
oretical approach, we make the following contributions: In
summary, the main contributions of this paper are:

• We built a bespoke wireless testbed and performed
an exhaustive experimental study of the power con-
sumption and performance of vBSs, using different
hosting platforms, configurations and use cases. Our
experiments reveal hitherto-unknown features of this
new class of base stations that depart significantly
from the energy consumption profile of legacy base
stations.

• We developed a non-parametric learning framework
to optimize the vBS operation in runtime; and we
propose two algorithms for tackling two key prob-
lems: (i) BP-vRAN, which balances performance and
costs; and (ii) SBP-vRAN, which maximizes per-
formance subject to hard power consumption con-
straints. Our framework is based on Bayesian learn-
ing techniques, which remain relatively unexplored
in communication networks (cf. Sec. 2), and which
we extend to account for the network context and
also amend them with practical rules in order to be
suitable for vRANs.

• Finally, we assess the performance of our algorithms
using realistic contexts (network loads and channel
dynamics), and compare their performance and data
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requirements with a state-of-the-art RL solution. The
findings verify that they constitute strong candidates
as the next-generation zero-touch vBS control solu-
tion. The source code of BP-vRAN and SBP-vRAN
and the produced experimental datasets are publicly
available, aspiring to facilitate the evaluation of other
AI/ML solutions for vRAN orchestration.

This paper extends our preliminary conference version
[19] with the following contributions:

• We design and implement a customized version of
a state-of-the-art deep reinforcement learning algo-
rithm (DDPG) as a benchmark solution. We configure
it to efficiently solve both of the problems investi-
gated in this paper.

• We expand our evaluation section to thoroughly
compare our solutions, BP-vRAN and SBP-vRAN,
against the DDPG algorithm. We evaluate the con-
vergence rate for both cases and assess the perfor-
mance of a sudden change on the power budget for
the second one. We discuss the pros and cons of
Bayesian against reinforcement learning NN-based
solutions.

Paper Organization. Section 2 discusses the related work
and positions our contributions accordingly, and Section 3
presents experimental measurements that bring to the fore
the vBS control challenges. In Section 4 we introduce the
system model and formulate the two optimization prob-
lems. Section 5 follows with the Bayesian-based learning
algorithms for solving the problems at hand, and Section 6
presents a series of experiments that validate our approach
and compare it with deep-learning algorithms. We conclude
in Section 7.

2 RELATED WORK

2.1 Network Optimization & Automated Configuration

The works that optimize resource management in soft-
warized cellular networks can be classified to: (i) those re-
quiring models that relate control variables to performance
metrics; (ii) model-free approaches that rely on offline train-
ing data; and (iii) online learning techniques. Interesting
examples in (i) include [20] which performs rate control
to maximize throughput subject to computing capacity;
[14] that selects also the MCS and airtime; and [21] that
additionally adapts to traffic. Nonetheless, such models are
in practice platform/context dependent and unknown. On
the other hand, model-free approaches employ machine
learning, e.g., Neural Networks, to approximate perfor-
mance functions [22]. Such approaches are used in network
slicing [23], throughput forecasting [15], edge computing
[24], etc. Their efficacy is remarkable as long as there are
enough and representative training data. Otherwise, we need
to employ online learning that has been recently used,
for instance, to configure video analytic systems [25] and
minimize the power consumption and interference among
BSs [26]. Similarly, online convex optimization is used for
cloud and IoT resource orchestration [27], [28], but requires
convex functions; a condition not satisfied here. Another
approach is reinforcement learning (RL), used in spectrum

management [16], network diagnostics [29], interference
coordination [30], and SDN control [31], among others. In
this line, [32], [33] optimize the energy efficiency of the
network as a function of some parameters such as the
resource block allocation, the transmission power, or the
amount of network offloading. Compared to [32], not only
we are considering more configuration parameters, we are
also considering more relevant aspects and dimensions of
the problem. Specifically, in [32], they rely on a simplified
setup comprised of some communicating blocks using GNU
radio instead of a full system, and on an over-simplistic
power consumption model given by a linear equation where
the circuit power is considered constant. In marked contrast,
we do not make any modeling assumption. We rely on real
measurements from a full-fledged 3GPP-compliant system,
which moreover show that the consumed power of our tar-
get object (a virtualized BBU) is highly variable, shows non-
linear behavior, and depends on many aspects. In [33], the
authors address the problem of offloading and autoscaling
in mobile edge computing considering renewable energy.
However, the radio access network (RAN), which is the
focus of our work, and hence their approach cannot be
applied to our problem.

Similarly to RL, contextual bandits have been employed
to adjust video streaming rates [34]; configure BS parame-
ters (e.g., handover thresholds) [35], [36]; assign CPU time
to virtualized BSs [17]; and control mmWave networks
[37], [38]. Here, instead, we combine Gaussian Processes
[11] and contextual bandit algorithms [39] to build a data-
efficient Bayesian optimization framework [10] with con-
vergence guarantees. Our approach captures the non-trivial
multimodal correlations of configurations (revealed by our
experiments) through GPs, and use these perpetually-
updated functions to sample the decision space. Our work
draws from the seminal CGP-UCB algorithm [39] which
is extended to include vRAN-specific context, to optimize
throughput and power costs, and to satisfy hard power
constraints. This is crucial for vBS which cannot exceed at
any time their power threshold, e.g., when they are powered
over Ethernet.

Despite been very successful in many problems, rang-
ing from the design of experiments to automated machine
learning [10], Bayesian learning algorithms to date have
not been used in communication networks, with very few
exceptions such as [40] that explores the optimal server
configuration for big data computing. Our approach aspires
to fill this gap by studying experimentally their efficacy on
the vRAN orchestration problem. To that end, we also com-
pare them with a state-of-the-art Deep RL solution: Deep
deterministic policy gradient (DDPG) algorithm adapted to
our contextual bandit setting. Such sophisticated neural-
network based solutions have only recently been used in
wireless networks (e.g. for traffic scheduling) [17], [41], [42],
and, to the best of our knowledge have not been compared
against Bayesian optimization approaches.

2.2 Experimental Profiling of vBS Computing & Power
Consumption

Clearly, it is imperative to explore experimentally the op-
eration of these new BSs. The early work of [43] studied
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the cost savings when pooling the processing operations of
multiple BSs, and [44] proposed a similar vRAN architecture
and measured 30% processing load reduction. Other studies
considered the effect of MCS, bandwidth, and SNR on BBU
computing load [45], [46]. In [47] an OAI simulator was used
to model the processing time for different configurations,
and [17] presented measurements with srsLTE for the im-
pact of traffic. Our experimental analysis builds on these
important works and further measures the impact of new
context parameters and radio schedulers on throughput, the
coupling of uplink and downlink operations, and the vBS
power consumption in different scenarios.

Existing power consumption studies for legacy BSs focus
on the effect of power amplifier, RF output, and baseband
processing. The work [48] introduced the EARTH model
which relates the RF output power with the supplied power;
and [49] considered also the effect of bandwidth. The works
[50], [51] proposed similar models for macro and micro BSs,
and [52] studied how the packet length affects the CPU
power consumption. A detailed model accounting for the
different BS components is presented in [53], [54].

To illustrate the power behavior of legacy BS, we rely on
the seminal model proposed in [48], where the consumed
power (Pin) is given by

Pin =

{
NTRX · P0 + ∆p · Pout, 0 < Pout ≤ Pmax

NTRX · Psleep, Pout = 0
(1)

where NTRX is the number of transceivers, Pout is the RF
output power, Pmax is the maximum RF output, P0 rep-
resents the power consumption at zero RF output power,
Psleep is the power consumption of transceivers components
in sleep mode, and ∆p is the slope of the load-dependent
power consumption.

Note that the model in eq. (1) is basically focused on
the downlink, which is the predominant factor in legacy
BSs. Conversely, for the new generation of small form-
factor vBSs the uplink and the configuration parameters
are equally important1. Moreover, although the downlink
transmission power and airtime can be captured by Pout,
other factors such as the MCS and channel quality are not
considered in eq. (1) and we have found they are relevant
in the consumed power of vBSs. We observe that the model
in eq. (1) is linear, which is a good approximation of the
measurements in [48]. Its slope, given by ∆p, characterizes
the relation between the consumed power and Pout the total
RF output power radiated at the antenna elements. Simi-
larly, some previous works that focused on vBS include [56]
which proposed a theoretical model of CPU power con-
sumption as a function of the active CPU cores, clock speed,
and load. It also assumes a linear relation of traffic with
computational load, and hence with the consumed power.
This assumption is not universal, however, and our findings
agree with previous studies finding non-linear effects [45].

More importantly, the impact of hardware, software plat-
form, and context on these metrics is unknown and cannot
be captured in predefined models. Our GP-based approach
overcomes this obstacle since it essentially builds the models
on-the-fly using the sampled data.

1. In femtocells, the BBU consumes 40% of power [55]
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Fig. 1: (a): Comparison of power consumption at: the BBU
(Intel NUC i7-8559U@2.70GHz), the BBU’s CPU, and the
RU (an USRP SDR), with 20Mbps DL and UL traffic. (b):
Consumed power over the baseline for different radio band-
widths and hardware platforms. SF PC 1: Intel NUC i7-
8559U@2.70GHz; SF PC 2: Intel NUC i7-8650U@1.90GHz;
Server 1: Dell XPS 8900 i7-6700@3.40GHz; Server 2: Dell
Aurora R5 i7-9700@3.00GHz.

3 PRELIMINARY EXPERIMENTAL ANALYSIS

We performed experiments using a customized srsLTE-
based testbed [2], described in Section 6.1. We present here
results that motive the problem and our solution approach.
• BBU/CPU Power Cost & Impact of Platform. Our first

finding is that the power consumption associated with the
BBU processing is comparable to the RF chain’s transmission
power. This result is consistent with previous studies; for
example, [55] estimated that 40% of a femtocell’s power
consumption is due to its BBU. In detail, Fig. 1a dissects the
power consumption of a vBS deployed on a small factor (SF)
PC, and presents the different power components stemming
from the BBU’s CPUs2; the BBUs cloud platform except the
CPUs; and the actual radio unit (RU) which is deployed over
an USRP software-defined radio. In order to have a com-
plete picture, we measure the power consumption in four
different scenarios: (i) the vBS is not deployed (baseline),
(ii) the vBS is deployed with an idle user attached (vBS
idle), (iii) the vBS is transmitting 20Mbps of downlink (DL)
traffic, and (iv) the user is transmitting 20Mbps of uplink
(UL) traffic to vBS.

Excluding the baseline scenario, the CPU power con-
sumption is, on average, 29% larger than the RU power
consumption; while the overall BBU power exceeds it by
175% (208% with full UL load). Interestingly, these numbers
depend on the platform which hosts the BBU. Namely,
Fig. 1b shows the BBU consumption over the baseline for
various platforms.3 We compare the power consumed by
the BBU in idle state and when operating at full UL/DL
buffer, and subtract the baseline power. Indeed, the power
consumption changes significantly, and it is also affected by
the vBS bandwidth – yet another configurable parameter of
softwarized base stations.
• Impact of SNR & MCS. The second finding is that the

signal-to-noise ratio (SNR) of the wireless channel and the
UL modulation and coding scheme (MCS) affect the BBU

2. We use Intel’s Running Average Power Limit function integrated
into the Linux kernel for the CPU power consumption.

3. The small PCs consume less power than the servers, which can
host more vBSs and thus consumes less power/user.
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Fig. 2: vBS over SF PC 1 at full UL buffer. (a): UL decoding
time for various SNR and MCS values. (b): Power con-
sumption as a function of the decoder performance (high
correlation).
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Fig. 3: (a): Eight configurations of MCS and airtime that
offer 2.6Mbps in UL, and the respective power (idle mode’s
power subtracted). (b): Normalized BBU power consump-
tion over baseline, for full buffer UL transmissions and high
SNR values, as a function of MCS and airtime.

computing load – and hence its power consumption – in
a non-linear fashion. This is because the decoder needs
increasingly more iterations when the received signal be-
comes noisier. Thus, the decoding time per subframe in-
creases, e.g., by 52% between 20 and 15 dBs for MCS 23,
see Fig. 2a; and this induces a commensurate increase in
power consumption, see Fig. 2b. Besides, Fig. 2b shows that,
even for a fixed decoding time, higher MCS values induce
more power consumption, which is attributed to their more
intricate demodulation (denser constellation map). Impor-
tantly, excessive decoding delays can induce throughput
loss since they lead to violations of vBS processing dead-
lines [2]. Hence, maximizing throughput does not only have
an unpredictable effect on power, but it is indeed highly
non-trivial to achieve in a resource-efficient way.
• Configuration Options & Impact of Scheduler. The

vBS orchestration difficulties are exacerbated by the
plenitude of configuration options these base stations offer.
Fig. 3a, for instance, presents combinations of MCS and
airtime values (percentage of used subframes) achieving
the same UL throughput. Configurations with higher
MCSs (and therefore lower airtime) reduce power by 38%.
However, this relation is non-monotonic, as we have also
measured higher power when the MCS increases and
SNR is relatively low. This latter effect is due to the fast
increase of computing load (see Fig. 2b). On the other hand,
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Fig. 4: MCS impact on BBU power consumption with high
SNR. Results presented for three cases: only DL traffic being
processed; only UL traffic; concurrent DL and UL traffic.

configurations 6 to 8 have the same power consumption,
but still differ since configuration 8 involves lower airtime
and thus can serve more users, while configuration 6 is
more resilient to noise. These decisions are made by the vBS
radio scheduler4 that selects the MCS and airtime based
on the measured SNR (context). For this experiment, we
have properly modified the srsLTE scheduler in order to
support different airtime values. Fig. 3b shows the power
consumption as a function of MCS and airtime for UL
transmissions. We observe that both parameters have a
smooth impact on power consumption, but it is important
to stress that, in practice, this relation is not available and
needs to be learned.
• Coupling of DL & UL Processing. Finally, Fig. 4 shows

the BBU power consumption when DL and UL traffic is
processed separately and concurrently (UL+DL), for high
SNR and various MCS values. We observe that the joint
power is not the total sum of the separate components.
For instance, for MCS 15, concurrent DL and UL processing
consumes just 7.5% more than UL-only processing (and 26%
over DL-only). This is because there are common power
consumption factors in both streams. This, in turn, makes
it difficult to predict the overall vBS power consumption,
given that the DL and UL can be configured separately. Also,
note that UL power costs are higher and more volatile than
DL, since decoding is more computationally demanding.

Conclusions: characterizing the vBS performance and
power consumption is intricate as it depends on exogenous
conditions such as the network traffic and SNR; and the BS
configuration, e.g., the selected MCS and airtime parame-
ters. There are many DL and UL configurations and some
of them present non-linear and non-monotonic relations with
power and throughput. Moreover, the power consumption
depends on the BBU platform and the radio scheduler –
which if almost fully customizable in vBSs. This hinders
the derivation of generally applicable power consumption
models. Hence, we propose the use of online learning to
profile each vBS power cost and performance, and devise
accordingly goal-driven configuration policies.

4. For example, our testbed’s scheduler selects the maximum MCS
for a given SNR and reduces the airtime whenever UL traffic is lower
than the link capacity; but for DL traffic it selects lower MCSs so as
to make the communication more robust, but this increases the power
consumption.
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4 SYSTEM MODEL AND PROBLEM FORMULATION

Our modeling approach follows carefully the latest O-RAN
architecture proposals [6] which have provisions for (in fact,
envision) learning-based orchestration of the BS operation,
and as such is fully aligned with the ideas presented in this
work. We start by presenting the O-RAN elements that are
pertinent to our model and subsequently we formulate the
two optimization problems.

4.1 O-RAN Background and Model
We consider a virtualized Base Station (vBS) comprising a
Baseband Unit (BBU) that may correspond to a 4G eNB or
a 5G gNB5 hosted in a cloud platform and attached to a
Radio Unit (RU), which are fed by a (possibly) constrained
energy source. This type of BSs is relevant for low-cost small
cells, Power-over-Ethernet (PoE) cells, and other similar
platforms that are increasingly common in 5G-and-Beyond
networks. Our goal is to use O-RAN’s control architecture
to implement configuration policies that are adaptive to
system dynamics while satisfying different energy-aware
performance criteria.

O-RAN Architecture. Fig. 5 shows the high-level archi-
tecture of our system, which is O-RAN compliant [6]. The
Learning Agent (LA) implements online learning algorithms
within the Non-Real-Time (Non-RT) RAN Intelligent Con-
troller (RIC) in the system’s orchestrator, and selects efficient
radio policies every orchestration period t = 1, . . . , T (usually
in the order of seconds). The optimal decision (i.e., a radio
policy) in each t depends on the context information. This
is provided at the beginning of each period by the vBS
(via the O1 interface) from measurements collected at sub-
second granularity within the near-RT RIC (using the E2
interface). The computed radio policies are then configured
on the vBS via its A1-P interface as shown in Fig. 5. At the
end of each orchestration period, the Data Monitor module
in the Near-RT RIC computes a reward by aggregating the
adopted performance metrics, which are collected from the
vBS via the E2 interface; and eventually provides the results
to the LA (O1 interface). Our system model and solution
algorithms are fully compatible with this architecture.

Context Information. We define the DL context at each
period t as ωdlt := [c̄dlt , c̃

dl
t , d

dl
t ], where c̄dlt and c̃dlt are the

mean and variance of the DL channel quality indicator (CQI)
across all users in the previous period; and ddlt is the new
bit arrivals at the vBS DL aggregated across all users. Note
that the DL CQI values are sent periodically from the UEs
to vBS through Uplink Control Information (UCI) carried
by 4G/5G’s Physical Uplink Shared Channel (PUSCH) or
Physical Uplink Control Channel (PUCCH). Conversely, ddlt
is measured by the vBS at the PDCP layer.

Also, we define the UL context as ωult := [c̄ult , c̃
ul
t , d

ul
t ].

The UL CQI is measured by the vBS at MAC layer, and
the new UL bit arrivals are estimated from the periodic
Buffer Status Reports (BSRs) of the users (UEs). All these
measurement are collected by the Near-RT RIC’s Data Mon-
itor (Fig. 5) from the vBS using the E2 interface at sub-
second granularity, and are aggregated at the start of each

5. 5G decouples BBU in 2 logical functions, i.e., a central unit (CU)
and a distributed unit (DU). Our scheme controls the DU, or both when
these are co-located.
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Fig. 5: O-RAN compliant system architecture and workflow.

orchestration period t. We denote the global context vector
ωt := [ωdlt , ω

ul
t ] ∈ Ω, where Ω is the context space. Note

that the contexts are related to the traffic load and channel
quality and are exogenous parameters, i.e., the configuration
decisions cannot affect them. This allows us to formulate the
problem as a Contextual Multi-armed Bandit or Contextual
Bandit (CB). By using this formulation we can configure the
system based on the observed contexts and learn from the
zeroth-order feedback of our system (i.e., we observe only
the outcome of the employed configuration).

vBS Controls. We define the DL control xdlt :=
[pdlt ,m

dl
t , a

dl
t ] at period t, where pdlt ∈ Pdl is a transmission

power control (TPC) policy for the maximum allowed vBS
transmission power, mdl

t ∈ Mdl is the highest MCS eligible
by the vBS (DL MCS policy), and adlt ∈ Adl is the maximum
vBS transmission airtime (DL airtime policy). We define the
UL control xult :=[mul

t , a
ul
t ], where mul

t ∈Mul and ault ∈Aul
are the UL MCS and airtime policies.6 We hence formalize
each control at decision period t as a radio policy:

xt := [xdlt , x
ul
t ]∈X , X = Pdl×Mdl×Adl×Mul×Aul,

where X is the control space. Once computed, the LA sends
each radio control policy to the Near-RT RIC via O-RAN’s
A1-P interface, which is then applied to vBS. The UL policies
are applied by configuring each UL scheduling at the vBS
MAC layer.

Rewards. We denote with Rdl(ωdlt , x
dl
t ) and

Rul(ωult , x
ul
t ) the DL and UL data transmission rates,

and define the reward function r(ωt, xt) :=

log

(
1 +

Rdl(ωdlt , x
dl
t )

ddlt

)
+ log

(
1 +

Rul(ωult , x
ul
t )

dult

)
(2)

where the logarithms are used to achieve fairness between
the DL and UL flows – and to that end, one could use
any other α-fair function [57]. Note that we divide the
achieved rates with the actual load in the respective stream
(uplink or downlink) since the reward should naturally be
defined in relation to the needs of the system. Also, it is

6. We do not define an UL TPC policy since the users’ transmission
power has less impact on the vBS power than the MCS and UL airtime;
but our framework can be readily extended to include this decision.
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important to stress that in practice we can only hope to
observe noisy values of these functions, even when their
arguments are fixed, because naturally the system operation
is stochastic and also the power measurements are noisy –
as we have indeed seen in our experiments. Fortunately,
our optimization framework can handle such impairments.
Henceforth, we denote with Rdlt (ωdlt , x

dl
t ), Rult (ωult , x

ul
t ) and

rt(ωt, xt) these noisy samples of the functions at period
t, which are considered to be stationary and return the
mean (unperturbed) respective values when averaged (i.e.,
on expectation).

4.2 Case 1: Balancing performance and cost

We start with the case where the power supply is scarce
or, equivalently, the operator wishes to reduce the power
consumption costs. This can be achieved with a scalarized
objective function:

u(ωt, xt) := r(ωt, xt)− δ ·B
(
P (ωt, xt)

)
, (3)

where P (ωt, xt) is the vBS power consumption associated
with the pair context-control (ωt, xt), B(·) is a smooth func-
tion that models the cost associated with power consump-
tion, and parameter δ determines the relative importance
of the power cost and achieved throughput, and can be
selected based on the operator’s preferences. We will also
use ut(ωt, xt) to denote the realization of the objective func-
tion related to the t-period samples Pt(ωt, xt) and rt(ωt, xt).
The selection of the cost function is crucial here. In the
simplest case, it can be a linear function that maps the actual
consumed power to a monetary value (negative reward).
But, it can also model situations where policies that exceed
a power threshold should be prevented due to regulation,
battery constraints, and so on. To capture all these cases,
we propose to use a parameterized sigmoid function with
sharpness and tipping parameters a and b:

B(x) :=
1 + eab

eab

(
1

1 + e−a(x−b)
− 1

1 + eab

)
. (4)

When a → 0, function B(·) approximates a linear function,
and when a grows [58] it approximates the step function,
without however to induce unbounded gradients – a condi-
tion that would deteriorate the learning process.

Following the standard approach in Bayesian bandit
optimization [13], [39], we use the cumulative contextual
regret to assess the performance of our algorithm. Namely,
we define the average T -period contextual regret:

RT :=
T∑
t=1

(
max
x′∈X

u(ωt, x
′)− u(ωt, xt)

)
,

where maxx′∈X u(ωt, x
′) yields the best decision for the

current period, which we cannot calculate in practice since
the objective function is unknown. Our goal, therefore, is
to find a sequence of decisions 〈xt〉Tt=1 from set X which
ensure asymptotically sublinear average pseudo-regret, i.e.,
limT→∞E[RT ]/T = 0, where the expectation is taken with
respect to the noisy samples and the context arrival process.

4.3 Case 2: Hard power budget
A different problem arises when the vBS operates under a
hard power budget Pmax, e.g., when powered over Ethernet.
In these cases, the LA has to find the maximum-throughput
configuration that respects the available power budget. Im-
portantly, the LA needs to achieve this goal by emloying
a safe exploration of the configuration space X in order to
satisfy the Pmax threshold at any period, i.e., not only at
the final optimal-operation stage. We define the respective
regret:

RsT :=
T∑
t=1

(
max

x′∈St(ωt)
r(ωt, x

′)− r(ωt, xt)
)
, (5)

where in this case the decisions are selected from set

St(ωt) =
{
x ∈ X

∣∣∣ P (ωt, x) ≤ Pmax

}
. (6)

Note that we use in the definition of regret directly the
throughput reward, since the power is now considered a
hard constraint. Our goal is to find a sequence 〈xt〉Tt=1,
xt∈St(ωt), such that limT→∞E[RsT ]/T = 0. It is important
to stress that the sets St(ωt),∀ωt, are unknown initially,
since P (ω, x) is also unknown, and therefore we need learn
them using the real-time measurements Pt(ωt, xt). Similarly,
we only have access to rt and ut, i.e., the t-period noisy
measurements, instead of the actual functions r and u.

To solve the above problems, we propose a non-
parametric learning approach using Gaussian Processes,
Contextual Bandits, and Bayesian learning. Our approach
has the additional practical advantage that one can change
Pmax in runtime, which in fact is possible in the PoE stan-
dard (IEEE 802.3bt), at any time without having to restart
the learning process. Other parametric methods, such as
Reinforcement Learning relying on neural networks, need
to be re-trained if the constraint changes, which naturally
increases substantially the required training data.

5 BAYESIAN ONLINE LEARNING SOLUTIONS

Next, we propose two online algorithms for solving the
problems stated in Sections 4.2 and 4.3. Our proposals
leverage state-of-the-art Bayesian learning techniques which
are properly configured and extended to account for the net-
work context information, and amended with practical rules
(of independent interest) that improve their performance, as
we verify experimentally.

5.1 BP-vRAN: Balancing performance and cost
Many algorithms for solving contextual bandit problems
assume there is a feature vector associated with each action,
and the objective function is linear in that vector [59], [60].
This assumption does not hold here for the following rea-
sons. Firstly, the objective function is not linear, see eqs. (2)-
(4). Secondly, the function values associated with different
actions (i.e., vBS control policies) are correlated. Intuitively,
we can think that a small change in some parameter (e.g.,
airtime) will induce a small change in the vBS consumed
power. This is actually evaluated experimentally in Fig. 3b.
This means that we can obtain information about unob-
served context-control pairs by observing nearby actions,
thus reducing the exploration time.
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Based on these observations, we propose a Bayesian
optimization method where we model the objective function
as a sample from a Gaussian Process (GP) over the joint
context-control space. This non-parametric estimator cap-
tures the aforementioned non-linearities and correlations,
and provides predictive uncertainty on the function estima-
tion. Hence, enable us to address effectively the exploration
- exploitation trade-off.

Function estimator. We use a GP as a function estimator,
which is a collection of random variables following joint
Gaussian distributions [11]. Let z ∈ Z = Ω × X denote
a context-control pair. We model the unknown objective
function (3) as a sample from a GP (µ(z), k(z, z′)), where
µ(z) is its mean function and k(z, z′) is its covariance
function or kernel. Without loss of generality, we assume
µ = 0 and bounded variance k(z, z) < 1, which we refer to
as the prior distribution, not conditioned on data.

Given this prior and a set of observations, the mean and
covariance of the posterior distribution can be computed us-
ing closed form formulas. Let yT = [u1, . . . , uT ] be a vector
of noisy samples (assuming i.i.d. Gaussian noise∼ N(0, ζ2))
at points ZT = [z1, . . . , zT ]. Then, the posterior distribution
of the objective function follows a GP distribution with
mean µT (z) and covariance kT (z, z′):

µT (z) = kT (z)>(KT + ζ21T )−1yT (7)

kT (z, z′) = k(z, z′)− kT (z)>(KT + ζ21T )−1kT (z′) (8)

where kT (z) = [k(z1, z), . . . , k(zT , z)]
>, KT (z) is the kernel

matrix [k(z, z′)]z,z′∈ZT
, and 1T is the T -dimension identity

matrix. These equations allow us to estimate the distribution
of unobserved values of z based on the prior distribution,
the vector ZT , and the function observations yT .

Kernel function. The kernel selection is crucial as it
shapes the prior and posterior GP distributions by encoding
the correlation between the values of the objective function
of every pair of points. Namely, k(z, z′) indicates the simi-
larity between ut(z) and ut(z

′). In other words, the kernel
characterizes the smoothness of the function [61]. The
properties of the kernel function should be carefully selected
according to the specific application and the underlying
function that will be learned. Therefore, we use the experi-
mental data analyzed in Sec. 3 to conclude that our kernel
should satisfy two properties: stationarity and anisotropicity.
On the one hand, the kernel k(z, z′) is stationary since it
depends only on the distance of z from z′, which means it
is invariant to translations in Z . On the other hand, a kernel
is anisotropic since the encoded smoothness is different
among the different dimensions of Z . That is, the kernel
is not invariant to rotations in Z . The smoothness of the
different dimensions of the function u are encoded into a
length-scale vector L = [l1, . . . , lN ], where N indicates the
number of dimensions of Z . Thus, the distance between two
points based on the length-scale vector can be written as:

d(z, z′) =
√

(z − z′)>L−2(z − z′), (9)

where L = diag(L) is a diagonal matrix of the length-scale
values. There are several kernel functions satisfying these
properties such as the squared exponential kernel, one of
the most commonly used. However, this kernel function
assumes the underlying function to be very smooth, i.e.,

infinitely differentiable. This assumption does not hold in
our framework since function B(·) defined in eq. (4) is not
infinitely differentiable. Besides, recall that B(·) maps the
monetary cost associated with the consumed power and
can be defined according to the operator’s needs. For that
reason, we relax this assumption and select the anisotropic
version of the Matérn kernel, which also satisfies the prop-
erties discussed above [11]. Furthermore, we configure it
with parameter ν = 3

2 , which implies that the objective
function is at least once differentiable. Note that this is a
mild assumption, which yields a loose regret bound (see
Lemma 1). In fact, our experimental evaluation in Section 3
shows that our approach performs much better than our
theoretical bounds in the scenarios we tested. However, if
we had more information about the structure of the function
to learn, we could easily tighten such bound by selecting
higher values of ν or by using a squared exponential kernel,
which may improve the rate of increase of information gain.
In this paper, we opt for the most conservative choice to
cover scenarios beyond the ones shown in our experimental
evaluation. The expression of the selected kernel is given
by:

k(z, z′) = (1 +
√

3d(z, z′)) exp(−
√

3d(z, z′)). (10)

To improve performance, we can optimize the hyperpa-
rameters L and the noise variance ζ2, eq. (7)-(8), before run-
ning the algorithm, by maximizing the likelihood estimation
over prior data and keep these values constant over time.
A different approach, namely when the hyperparameters
are optimized using the data acquired in runtime, it is not
guaranteed that the GP’s confidence interval will cover the
true function, and hence might induce the optimization
process to stuck in poor local optima [62]. We have also
observed this in our experiments.

Acquisition function. The acquisition function selects
one control xt at each period t based on the posterior dis-
tribution of the objective function over the context-control
pairs. To this aim, we use the Upper Confidence Bound
(UCB) method which follows the principle of optimism in
the face of uncertainty and allows us to derive theoretical
guarantees for the algorithm. Formally:

xt = argmax
x∈X

µt−1(ωt, x) +
√
βtσt−1(ωt, x). (11)

where ωt is the observed context at time t, βt is a weighting
parameter and σ2

t (z) = kt(z, z). We formalize our approach,
which we refer to as BP-vRAN (Bayesian optimization for
Power consumption in vRANs), in Algorithm 1. At the
beginning of each decision period t a context ωt is observed
(line 4). Based on the observed context ωt and the vectors
Zt−1 and yt−1, the posterior distribution is computed using
eqs. (7) and (8) (line 5). Note that when we have no data
(y0 = ∅, Z0 = ∅) the posterior distribution is equal to the
prior distribution. The control xt is decided based on the
GP posterior and the acquisition function (line 6). At the
end of t, the throughput and consumed power are observed
(line 7). Then, the reward and the monetary cost of the
power are computed using eqs. (2) and (4), respectively.
With these values, the value of the objective is computed
using eq. (3) (line 8). Finally, the new context-control pair
zt and the value of the objective function ut(ωt, xt) are
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Algorithm 1 BP-vRAN: Performance and cost balancing

1: Inputs: Control Space X , kernel k, β
2: Initialize: y0 = ∅, Z0 = ∅
3: for t = 1, 2, . . . do
4: Observe the context ωt
5: Compute µt−1 and σ2

t−1 = kt−1(zt, zt), eqs. (7)-(8)
6: xt = argmaxx∈X µt−1(ωt, x) +

√
βtσt−1(ωt, x)

7: Measure Rdlt (ωdlt , x
dl
t ), Rult (ωult , x

ul
t ) and Pt(ωt, xt) at

the end of the decision period t
8: Compute ut(ωt, xt) using (2), (3) and (4)
9: Update Zt ← Zt−1 ∪ zt := [ωt, xt]

10: Update yt ← yt−1 ∪ ut(ωt, xt)
11: end for

included in the vectors Zt and yt, respectively, to improve
the posterior distribution of the next iteration (lines 9-10).

Note that an alternative formulation of BP-vRAN with
two GPs (to approximate the reward and the consumed
power separately) instead of one is amenable to better
optimization of the kernels’ hyperparameters. Nevertheless,
the posterior variance of the objective function can be arbi-
trarily hard to obtain since the monetary cost of the power
(B(·)) is selected by the operator according to its needs.
In addition, this approach doubles the computational and
memory requirements.

Theoretical results. The choice of a value for βt in eq. (11)
is very important since it controls the trade-off between
exploration and exploitation. Larger values of βt lead the
acquisition function to select controls with higher uncer-
tainty while, conversely, controls already known to be high-
performing (though not necessarily highest-performing) are
selected when βt takes smaller values. Following [39], we
select

βt = 2B2 + 300γt ln3(t/ε) (12)

where ε ∈ (0, 1), B ≥ ‖u‖k is an upper bound on the
Reproductive Kernel Hilbert Space (RKHS) norm of u, and
γt is the maximum mutual information gain obtained from
u after t observations have been collected.

Lemma 1. The contextual regret RT of BP-vRAN satisfies

P
(
RT ≤

√
C1TβT γT ∀T ≥ 1

)
≥ 1− ε, (13)

at stage T , where C1 = 8
log(1+ζ−2) and γt = O(t44/45 log(t)).

The proof of Lemma 1 is given in the Appendix. For the
derivation of the bound of the information gain γt, we con-
sider a Matérn kernel with ν = 3

2 and N = 11 dimensions
in Z , which correspond to a 6- and a 5-dimensional context
and control space, respectively, as described in Sec. 4. For
this setting, we particularize the expression provided in
Theorem 5 of [63] to obtain the bound γt = O(t44/45 log(t)).
Note that the regret bound obtained in this analysis con-
siders a worst-case scenario, while the performance of the
algorithm in practice is commonly far from these bounds as
shown in Sec. 6. It is worth mentioning, however, that the
bound provided in Lemma 1 indicates that BP-vRAN is a
no-regret algorithm, i.e., limT→∞E[RT ]/T = 0.

5.2 SBP-vRAN: Safe Bayesian Optimization

Imposing hard constraints as proposed in Sec. 4.3, com-
pounds the problem. Prior works, e.g., in robotics and other
areas [12], [13], [64], [65], have proposed Bayesian opti-
mization algorithms with safety constraints. Their main idea
lays upon the definition: every t we define a subset of safe
controls St ⊆ X that satisfy the constraints with certainty.
Then, it is needed to interleave an exploration process so as
to expand the safe set, while seeking a safe action with high
performance. Unfortunately, these works do not consider
contextual information, which clearly affects the safe set, i.e.,
St(ωt)⊆X . To the best of our knowledge, only SafeOpt [65]
proposes a contextual safe learning algorithm. However,
although that algorithm provides theoretical guarantees,
its acquisition function selects the control with the highest
uncertainty among all candidates that can expand the safe
set and also the potential maximizers. We found in our ex-
periments that this approach has overly slow convergence.
This practical issue has been reported in other works as
well, e.g. [66]. Hence, we improve this methodology by
employing the acquisition function of CGP-UCB [39], but
constrained to the safe set.

We denote yfT = [r1, . . . , rT ] the vector of reward sam-
ples at T and ycT = [P1, . . . , PT ] the power consumption
samples. We use one GP for the reward and one for the
power constraint. Both GPs have the same prior distribution
and kernel but different hyperparameters. The posterior
distribution can be computed using (7)-(8), and replacing yT
by yfT or ycT , for each GP. We denote the posterior mean and
covariance of the reward at T as µfT (z) and kfT (z, z′), and
µcT (z) and kcT (z, z′) for the power, respectively. The initial
safe set S0 ⊆ X is common for all contexts, and includes
low power consumption configurations (vBS close to idle).
This is worst-case S0 can be expanded using prior data.

At each period, St is computed based on the posterior
distribution of the power consumption provided by the GP.
We assume the true value of the power consumption at time
t is within the interval [µct(z) ± βtσ

c
t (z)], where σct (z) =

kct (z, z). Using the posterior distribution, we define the safe
set a time t and for a given context ωt as:

St =
{
x ∈ X

∣∣∣ µct−1(ωt, x) + βtσ
c
t−1(ωt, x) ≤ Pmax

}
. (14)

The controls are selected at each period t using the CGP-
UCB policy subject to the safe set:

xt = argmax
x∈St

µft−1(ωt, x) +
√
βtσ

f
t−1(ωt, x), (15)

where
(
σft (z)

)2
= kft (z, z).

We summarize our approach, named SBP-vRAN (Safe
Bayesian optimization for Power consumption in vRANs),
in Algorithm 2. It is worth mentioning that in many
practical scenarios it is desirable to have a soft constraint
instead of a hard constraint. For instance, we may be in-
terested in violating the soft constraint (increase the power
consumption) to avoid poor user performance. We provide
two alternatives to handle this scenario. First, we can use
BP-vRAN by designing B(·) such that a power consump-
tion exceeding the constraint incurs in high monetary cost.
This approach provides soft guarantees where the power
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Algorithm 2 SBP-vRAN: Safe online optimization

1: Inputs: Control Space X , Initial safe set S0, kernel k, β,
Pmax

2: Initialize: yf0 = ∅, yc0 = ∅, Z0 = ∅
3: for t = 1, 2, . . . do
4: Observe the context ωt
5: Compute µft−1, σft−1, µct−1 and σct−1 using eqs. (7)-(8)
6: St = S0 ∪ {x ∈ X | µct−1(ωt, x) + βtσ

c
t−1(ωt, x) ≤

Pmax}
7: xt = argmaxx∈St

µft−1(ωt, x) +
√
βtσ

f
t−1(ωt, x)

8: Measure Rdlt (ωdlt , x
dl
t ), Rult (ωult , x

ul
t ) and Pt(ωt, xt) at

the end of the decision period t
9: Compute rt(ωt, xt) using (2)

10: Update Zt ← Zt−1 ∪ [ωt, xt]
11: Update yft ← yft−1 ∪ rt(ωt, xt)
12: Update yct ← yct−1 ∪ Pt(ωt, xt)
13: end for

constraint will be met in average but not at every interval.
Alternatively, we can modify the definition of the safe set
in eq. (14). Thus, we can add an exception such that if
the expected performance of all actions in the safe set is
below a performance threshold rmin, include at least one
action whose expected performance is higher than rmin.
Using this mechanism, we can set a minimum performance
requirement for the vBS operation.

Convergence of SBP-vRAN. Note that SBP-vRAN does
not expand explicitly the safe set, like in other works such
as [13], [65]. In general, an explicit expansion of the safe set
is needed (e.g., by exploring the controls in the boundary) to
converge to the true safe set and therefore to reach the op-
timal safe control. However, we found that our acquisition
function can both maximize the performance and expand
the safe set at the same time under some conditions.

Let us assume that the objective function and the con-
strained function are smooth and positively correlated. In
this case, the maximization of the objective function also
implies the expansion of the safe set. In fact, the optimal
configuration is located at the boundary of the constraint
space. This is a reasonable assumption in practice, as we
can assess empirically: On the one hand, Fig. 6a shows the
uplink throughput of our vBS as a function of the MCS and
the airtime (two of our control actions). From this figure,
we can see that the higher the MCS and the airtime the
higher the throughput. On the other hand, Fig. 6b shows
the consumed power as a function of the same variables.
Note that both figures show the same trend: the higher the
throughput the higher the consumed power.

We should remark that we have only considered two
vBS controls (MCS and airtime) for this example. However,
although the power behavior becomes non-linear when
including all the dimensions of the problem, these con-
clusions also hold in the complete problem. It is obvious
that higher airtime provides higher throughput. It is also
evident that higher MCSs provide higher throughput under
feasible conditions (appropriate SNR) as they allow to pack
more data symbols per unit of time. Similarly, higher MCSs
incur in higher power consumption because the number
of computations required by the decoding algorithms scale

Unfeasible 
region

S0

Sn1

Sn2

(a)

Unfeasible 
region

S0

Sn1

Sn2

(b)

Fig. 6: Example of safe set expansion in the uplink through-
put and power domains as a function of two decision
variables: uplink MCS and uplink airtime. As SBP-vRAN
explores, the initial safe set S0 is expanded until it reaches
the boundary of the unfeasible region, where the optimum
is located.

linearly with the number of bits to decode. Moreover, higher
transmission power enables higher MCSs and therefore
higher throughput. Therefore, higher throughput is generally
associated with higher power consumption.

The annotations in Figs. 6a-6b exemplify how SBP-vRAN
expands the safe set. The initial safe set (S0) is a set of
configurations with the lowest power consumption, i.e., low
MCS and airtime. This conservative initial safe set avoids vi-
olating the constraint from the beginning but also increases
the convergence time. The aim of SBP-vRAN is to maximize
the the reward function r which is directly related to the
throughput. Moreover, our acquisition function in eq. (15)
will select controls with high performance but also with
high uncertainty. These conditions are met by the controls in
the boundary of the safe set. By exploring these controls we
are reducing the uncertainty of its neighborhood and there-
fore expanding the safe set. After a few iterations (t = n1),
the safe set Sn1

has been expanded and the algorithm can
now select configurations with higher throughput. At that
point, the algorithm will continue exploring the boundary
of the constraint since it contains the configurations with
the highest throughput and also high uncertainty. After a
few iterations more, the safe set will reach the boundary of
the constraint, finalizing its expansion: the optimal configu-
rations fall into the boundary of the constraint space. This is
demonstrated in the following experimental evaluation.

6 EXPERIMENTAL EVALUATION

We have built a customized testbed to perform a thorough
evaluation of the proposed ML resource orchestration tech-
niques under realistic conditions. Our experiments employ
the software-based eNB srsRAN, cf. [2], which we have
properly modified (e.g., implementing scheduling policies,
enabling airtime selection, etc.) so as to capture the entire
range of our controls. The testbed configuration and created
datasets are available online7 for reproducibility reasons
and, importantly, so as to facilitate further research in the
area of AI/ML-assisted RAN orchestration.

7. https://github.com/jaayala/power dlul dataset
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Virtualized Base Station (vBS)

Baseband Unit (BBU)

Radio Unit (RU)

GW-Instek  
GPM-001 Adapter

Power Meter
GW-Instek GPM-8213

User Equipment (UE)

Fig. 7: Customized Wireless Testbed with a vBS (srsRAN)
and a node aggregating the UE traffic. Measurements are
collected in real time, using a GW-Instek Power Meter and
a Power Adapter.

6.1 Experimental setup

The testbed, shown in Fig. 7, comprises a vBS, the user
equipment (UE)8, and a digital power meter. Both the vBS
and UE consist of an Ettus Research USRP B210 as RU,
srseNB/srsUE (from srsRAN suite [2]) as BBU for the eNB
and UE, and two small factor general-purpose PCs (Intel
NUCs with CPU i7-8559U@2.70GHz) deploying each re-
spective BBU and the near-RT RIC of Fig. 5. The vBS and UE
are connected using SMA cables with 20dB attenuators and
we adjust the gain of the RU’s RF chains to attain different
SNR values. Without loss of generality, we select a 10-MHz
band that renders a maximum capacity of roughly 32 and 23
Mbps in DL and UL, respectively. We use the power meter
GW-Instek GPM-8213 to measure the power consumption
of BBU and RU by plugging their power supply cable to
a GW-Instek Measuring adapter GPM-001. Finally, we have
integrated E2’s interface and the ability to enforce control
policies on-the-fly (see Section 4) in srseNB.

We use three auxiliary PCs (not shown in the figure)
hosting the non-RT RIC and the network traffic end hosts,
which use mgen9. Finally, we have implemented O1 interface
(Fig. 5) using the USB-based power meter SCPI (Standard
Commands for Programmable Instruments) interface con-
cerning power consumption measurements and a REST
interface for the remainder. A final remark is that our RU
(USRP B210) does not integrate a variable power amplifier.
Instead, it uses a fixed power amplifier consuming 3W and
a variable attenuator for power calibration (see Fig. 1a). To
compensate for this, we post-process the power measure-
ments to include a variable RU consumption according to a
linear model based on previous works [48], [50] and a 3W
cap.

For the elaboration of the dataset used in Sec. 3, we
configure the vBS and UE in order to fix the conditions in
the uplink and the downlink in terms of traffic load, channel

8. We use one UE emulating the load of multiple users (see in
Sec. 6.3).

9. https://www.nrl.navy.mil/itd/ncs/products/mgen.
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Fig. 8: Convergence rate evaluation of BP-vRAN for differ-
ent objective function parameters.

quality, MCS, and airtime. Then, we fix each configuration
for approximately one minute while the system takes mea-
surements that later are processed to obtain its statistics.
We assess the power behavior of the vBS by measuring
the power consumption of its CPU and the whole BBU, the
achieved performance in terms of throughput and goodput,
details about the decoder at the vBS such as the subframe
decoding time and the number of turbo decoder iterations
per subframe, and some MAC and PHY indicators such as
the Buffer Status Report (BSR), Block Error Rate (BSR), and
the used MCS and airtime. Moreover, we detect and identify
unfeasible configurations in the dataset. This mainly occurs
when an MCS value is forced but the channel quality is
not good enough to decode its data. Finally, we release
our dataset7 online allowing the community to realistically
emulate the behavior of a vBS in terms of power consump-
tion and performance as a function of its configuration and
conditions (user traffic load and channel qualities) for future
research.

For the evaluation we consider |Pdl| = 20, |Mdl| = 28,
|Mul| = 24, and |Adl| = |Aul| = 11, and therefore the
size of the control set is |X | ≈ 1.6 · 106. Note that, for
a decision period of 10 seconds, we would need up to
185 days to explore every control policy in X once, which
highlights the need for a data-efficient learning strategy.
Although Lemma 1 guarantees convergence and sublin-
ear regret in general, faster convergence can be achieved
with problem-specific information. Hence, and in line with
previous works [65], [66], we select β1/2 = 2.5, which
shows good performance in our setup. In the case of BP-
vRAN, we configure δ = 20 and set the parameters a and
b in the penalty function, eq. (4), to severely penalize the
power consumption values close to b or higher. Namely,
we set a = 2.5 and evaluate different values of b. Finally,
we present the results of 10 (at least) experiments, where
we plot the mean values and the 10th and 90th percentiles
(shadowed areas). The source code of the algorithms BP-
vRAN10 and SBP-vRAN11 used for this evaluation can be
found online.

6.2 Convergence Evaluation
We start off by evaluating the convergence of BP-vRAN and
SBP-vRAN. To this end, we consider the special case of a sin-

10. https://github.com/jaayala/contextual bayesian optimization
11. https://github.com/jaayala/constrained bayes opt
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Fig. 9: Convergence rate evaluation of SBP-vRAN for differ-
ent values of the power budget Pmax.

gle context and observe their performance over time with no
prior training up till they converge to optimal policies. We select
a context with high SNR = 35 dB (CQI = 15) in DL and UL,
and high traffic demands (relative to our testbed’s capacity)
equal to 25 and 20 Mbps for DL and UL, respectively. Fig. 8-
9 show the temporal evolution of different metrics for both
algorithms during 150 orchestration periods.

Let us discuss first the results of BP-vRAN in Fig. 8.
We observe that the power consumption and, consequently,
throughput, are reduced for lower values of b, e.g., there is
12.5% power drop and 33.75% throughput drop between
b = 25 and b = 16. This is intuitive because lowering
b induces more stringent power requirements. Note that
b = 16 only penalizes DL throughput. This is because it
imposes a mild power requirement, and hence BP-vRAN
only sacrifices transmission power, which reduces DL SNR
and thus DL throughput. Lower values of b force BP-vRAN
to sacrifice UL throughput too.

Concerning SBP-vRAN, we evaluate different values of
Pmax up to Pmax = 20, which is an upper bound for
the power consumption irrespective of the policy and the
context. The results, in Fig. 9, depict how SBP-vRAN learns
to use configurations within the power budget with high
probability, sacrificing throughput when so required. Note
that, in all the cases, SBP-vRAN always selects policies very
close to Pmax. This is because the optimal policy, i.e., the one
that maximizes throughput, usually requires consuming all
the Pmax budget. To this end, SBP-vRAN gradually expands
its safe set close to Pmax and therefore an explicit strategy
to expand the safe set is not needed. Specifically, Fig. 10
shows that all the controls are safe for Pmax = 20, with 15.4%
and 53.2% less safe policies for Pmax = 14 and Pmax = 12,
respectively. As expected, lower values of Pmax incur a
smaller safe policy set.

We conclude this evaluation with the observation that,
despite using a large set of policies X , both algorithms
converge within 30 orchestration periods. This highlights
the data-efficiency of our solutions, which discern optimal
policies by observing only a small subset of X .

6.3 Performance in real network contexts
Next, we evaluate the performance of BP-vRAN and SBP-
vRAN using a realistic one-day traffic pattern from [67]
(Fig. 11, top). Concerning channel quality, we consider
a worst-case pattern emulating UEs with high mobility
(Fig. 11, bottom), which compromises network capacity
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Fig. 10: Time evolution of safe set size of SBP-vRAN for
different power budgets Pmax.
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Fig. 11: One-day traffic pattern (top) and worst case channel
quality pattern (bottom).

(well below the demand). Due to the granularity of our
traffic dataset, we set the orchestration period length to
5 minutes in these experiments (note there is no loss in
generality). We run our algorithms for two days and present
results of the second day to focus on the attained system
performance. Their convergence, evaluated in the previous
subsection, takes just a few periods. This is possible because
the selected policies for correlated contexts are also corre-
lated, i.e., knowledge acquired for one context is transferred
to other similar contexts. Hence, after few iterations, the
algorithms select efficient policies even for unseen contexts.

To remove the clutter introduced by the high SNR
variability under evaluation, each point in Figs. 12 and 13
corresponds to the average across all the points of a SNR
cycle, see Fig. 11, bottom. Fig. 12 shows the total power
consumption (a) and the evolution of throughput along the
day (b) using BP-vRAN and different configurations of the
objective function. We observe that the power consumption
evolves with the traffic demand and with the selected value
of b. For instance, when b = 16, the achieved throughput
is penalized in favor of better power consumption during
daylight but no performance degradation is required during
the night (between 2am and 7am). Similarly, Fig. 13 shows
the performance of SBP-vRAN under the same scenarios.
Specifically, SBP-vRAN manages to satisfy the power bud-
get constraint with probabilities 0.99 and 0.93 when Pmax
equals 14 and 12, respectively, while maximizing through-
put (which was calculated through exhaustive search).

6.4 Comparison with other approaches
We complete our evaluation comparing our solutions with
a state-of-the-art deep reinforcement learning algorithm:
the Deep Deterministic Policy Gradient (DDPG) [68]. This
algorithm needs to be customized since it is designed to
solve the full-RL problem while in this work we face a
contextual bandit problem. There are two main differences
between these two problems. First, the full-RL considers
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Fig. 12: Performance evaluation of BP-vRAN throughout
one day.
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Fig. 13: Performance evaluation of SBP-vRAN throughout
one day.

that selected actions (control policies) have an impact on
futures states (contexts). This assumption does not hold
in our setting since the configuration of the vBS does not
affect future contexts (traffic load and channel quality of the
users). Second, in the full-RL problem, the reward can be
delayed over time, while in our setting the performance is
available at the end of the decision period.

The DDPG is implemented using an actor-critic deep
neural network (NN) architecture and, in order to adapt it
to the contextual bandit problem, we configure the critic
NN to approximate the reward function instead of the Q-
value function (see [17] for more details). We consider the
same NN architecture as in [17] but we use a sigmoid as the
activation function of the output layer of the actor NN. Since
the action space of the DDPG is continuous (the output of
the actor is a continuous vector with the same dimensions as
X ), the selected actions are cast to the closer control policies
that can be configured by the vBS. Moreover, we optimize
the hyperparameters to minimize convergence time. Our
experiments show that the DDPG converges to the same
solutions as the proposed Bayesian-based algorithms, but
lacks in convergence speed and versatility. We illustrate
these issues using both problems that we presented in
Sec. 4.2 and 4.3 and one context, as in Sec. 6.2.

For the first problem (Sec. 4.2), we configure the reward
function of the DDPG to be the objective function in eq. (3).
Fig. 14 shows the time evolution of the objective function
for BP-vRAN and DDPG, for different values of b. Notably,
DDPG converges to the same optimal policy learned by BP-
vRAN but has to invest one order of magnitude longer time. The
main reason for this difference is that our approach infers
correlations in the objective function over the context-action

Fig. 14: Comparison of BP-vRAN with the customized
DDPG

space more efficiently; and hence finds optimal policies
even for unseen context-action pairs. This highlights the
data-efficiency of the GP-based solution. It is also worth
reminding that, differently to our benchmark, BP-vRAN has
mathematical guarantees in performance (see Sections 5.1).

In order to implement the constrained problem in
Sec. 4.3, we consider a customized reward function for the
DDPG. The reward is encoded using a step function that
takes the value of eq. (2) when the observed power is below
Pmax, and the minimum reward value otherwise. Fig. 15
shows the evolution over time of the power consumption
and the associated throughput performance of the vBS for
SBP-vRAN and DDPG. We begin the experiment by setting
the power constraint equal to 15W, and changing it to 13W
at decision period t = 2000.

Our results render three observations: (i) SBP-vRAN
attains considerable convergence improvements over its
benchmark (roughly, an order of magnitude). (ii) SBP-vRAN
is unaffected by a sudden change on the power constraint;
note that it only requires the change of Pmax in line 5,
Algorithm 2. Conversely, DDPG needs to change the con-
figuration of the step function, which forces to restart its
learning process from scratch, failing the hard constraint un-
til decision period 3500, approximately. (iii) DDPG cannot
perform safe exploration: it must use policies that violate
the power constraint to learn so. On the other hand, our ap-
proach computes the uncertainty of each estimation, which
allows us to implement safe exploration and satisfy the con-
straint with high probability. (iv) Although the DDPG can
potentially find better solutions due to its continuous action
space, our results show that both approaches converge to
the same solution due to the fine-grained discretization of
the action space of BP-vRAN and SBP-vRAN. Finally, it is
important to remark the inherent drawback of GP-based
approaches is the involved O(N3) computation complexity
(for Cholesky decomposition) in each orchestration period,
where N is the number of data points. We observed in our
experiments, however, that the unprecedented convergence
speed of these methods pays off in a very short time.
Moreover, we found that these computations do not induce
a delay since, according to O-RAN specifications, there is a
wide-enough time window to update the policy.
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7 CONCLUSIONS

The goal of this paper was threefold. First, to conduct an
in-depth experimental study of the power consumption of
virtualized base stations (vBSs); secondly, to propose two
Bayesian learning algorithms that optimize the vBS perfor-
mance subject to power constraints; and thirdly to evaluate
these algorithms in realistic conditions using a fully-fledged
wireless testbed, and compare them with state-of-the-art
solutions that use deep neural networks.

Our findings revealed an intricate relationship between
performance, power consumption, and key vBS control
knobs, which renders impractical traditional resource con-
trol policies and motivate machine-learning solutions. More-
over, we saw that Bayesian learning algorithms can indeed
enable efficient vBS operation; yet they require extensions
and amendments in order to account for the network con-
text and other practical and problem-specific issues. Finally,
we found that these approaches are more data-efficient than
state-of-the-art deep reinforcement learning solutions, but
are also more computationally-demanding. This latter prop-
erty does not pose a problem for O-RAN systems, according
to their operation requirements, but might become a limi-
tation for other resource control problems running in finer
time granularity – yet, there are remedies that can reduce the
computing load, e.g., re-initializing the GP approximation.

The considered problems are motivated by the latest in-
dustry developments in next generation virtualized RANs,
and are centered around power consumption which is prob-
ably their most prevalent design constraint. Similarly, our
solutions are in line with the requirements for automated,
data-driven, platform-oblivious vRAN configuration. As
such, we believe this work opens a new research direction
and to that end we also make publicly available our testbed
implementations and the collected measurements. We have
released the source code of BP-vRAN and SBP-vRAN along
with the dataset used in this work to foster future research
in this area.
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APPENDIX

This section provides details for the proof of Lemma 1, that
is based on [63] and [39].

Lemma 2. Let ε ∈ (0, 1), assume that the noise in the observa-
tion is uniformly bounded by ζ and βt = 2B2 + 300γt ln3(t/ε),
then:

Pr{∀t, ∀z ∈ Z, |µt−1(z)− u(z)| ≤
√
βtσt−1(z)} ≥ 1− ε.

(16)

Proof. Given in [63, Theorem 6].

Lemma 3. Fix t ≥ 1. If |u(z) − µt−1(z)| ≤
√
βtσt−1(z)

for all z ∈ Z , the contextual regret rt is then bounded by
2
√
βtσt−1(zt).

Proof. The proof follows [39, Lemma 4.1]. Let x∗t ∈
argsupx∈Xu(ωt, x) be the optimal control at decision pe-
riod t. Then, considering xt to be the selected control
at decision period t, given the acquisition function in
eq 11: µt−1(ωt, xt) +

√
βtσt−1(ωt, xt) ≥ µt−1(ωt, x

∗
t ) +√

βtσt−1(ωt, x
∗
t ) ≥ u(ωt, x

∗
t ). Therefore, rt = u(ωt, x

∗
t ) −

u(ωt, xt) ≤
√
βtσt−1(ωt, xt) + µt−1(ωt, xt) − u(ωt, xt) ≤

2
√
βtσt−1(ωt, xt).

Lemma 4. The information gain for the points selected can be
expressed in terms of the predictive variances. If uT = (u(zt)) ∈
RT [63]:

I(yT ;uT ) =
1

2

T∑
t=1

log(1 + ζ−2σ2
t−1(zt)) (17)

Proof. Given in [63, Lemma 5.3].

Proof of Lemma 1. The proof follows [39, Theorem 5]. By
Lemma 2 and Lemma 3 we have that Pr{r2t ≤
4βtσ

2
t−1(zt)∀t ≥ 1} ≥ 1−ε. Given that βt is non-decreasing,

we have that

4βtσ
2
t−1(zt) ≤ 4βT ζ

2(ζ−2σ2
t−1(zt))

≤ 4βT ζ
2C2 log(1 + ζ−2σ2

t−1(zt)) (18)

with C2 = ζ−2/ log(1 + ζ−2) ≥ 1, since s2 ≥ C2 log(1 + s2)
for s ∈ [0, ζ−2], and ζ−2σ2

t−1(zt) ≤ ζ−2k(zt, zt) ≤ ζ−2.
Considering C1 = 8σ2C2 and R2

T ≤ T
∑T
t=1 r

2
t (Cauchy-

Schwarz inequality), the result follows from Lemma 4.


