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Introduction
Why vRAN?

– Virtualization is considered today the most promising approach for 
bringing cellular networks up to speed with the demanding services 
they aspire to support.

– The softwarization of the base stations (vBS) allows their deployment 
in diverse platforms, but render less predictable their performance 
and power consumption 

– In order to unleash the full potential of vRANs we need to answer 
two key questions:

• what is the performance and energy consumption profile of vBSs?

• how can we optimize their operation using an adaptive and 
platform-oblivious approach?
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Experimental evaluation
We evaluate the power consumption of a vBS in our testbed

– The testbed comprises a virtual Base Station 
(vBS), the user equipement (UE), and a digital 
power meter.

– We use 2 Ettus Research USRP B210 (radio part) 
and 2 Intel NUCs with CPU i7-8559U (BBU).

– We use srsLTE suite to implement the BBU for 
both the eNB and UE

– We select the 10 MHz bandwidth.

– Digital power meter GW-Instek GPM-8213 along 
with the adapter GPM-001.

– We have integrated O-RAN E2 interface and the 
ability to change vBS configurations on-the-fly.

– We generate the traffic load for both DL and UL 
using mgen.
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Experimental evaluation
BBU/CPU cost & impact of computing platform.

Radio 
contribution

Computational 
contribution

Different computing platforms
Intel NUCs for the SF PCs, and two high-

performance computation servers.
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Experimental evaluation
Impact of SNR and MCS

Decrease of channel quality
The higher the decoding time the 

higher the consumed power
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Experimental evaluation
Configuration options and impact of scheduler

Eight different configurations with 
the same Throughput in the UL

Joint effect of MCS and airtime on 
the consumed power
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Experimental evaluation
Coupling UL and DL
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Experimental evaluation
Conclusions

– Characterizing the vBS power consumption is intricate as it depends 
on traffic, SNR, MCS and airtime.

– There are many DL and UL configurations and some of them present 
non-linear and non-monotonic relations with power and throughput.

– The power consumption depends on the BBU platform and radio 
scheduler.

– This hinders the derivation of general consumption models.

– We propose the use of online learning to profile each vBS power cost 
and performance, and devise goal-driven configuration policies.
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Problem formulation
Contexts, actions and rewards

Context downlink:

Context uplink:

Context:

Action downlink:

Action uplink:

Action:

Reward:

New bit arrivals

CQI (mean and var)

MCS

airtime

Transmission power

Throughput
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Problem formulation
Case 1: Balancing performance and cost

– The power supply is scarce, or the operator simply wants to reduce 
the power costs.

– Trade-off throughput vs. power consumption 

– Objective function:

– Contextual regret:

– Objective: Find a seq. of decisions                that

Consumed power

monetary cost associated with
power consumption

Weighting factor
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Problem formulation
Case 2: Hard power budget

– The vBS operates under a hard power budget Pmax, e.g., when 
powered over Ethernet (PoE).

– Find for maximum throughput configuration meeting the budget

– Contextual regret:

– Available actions:

– Objective: Find a seq. of decisions                that



12

Problem formulation
How do we solve the contextual bandit problem?

Challenges:

– Most contextual bandit algorithms assume that there is a feature 
vector associated with each action, and the relation between the 
feature vector and the objective is linear or known.

– In our case, non linear the contexts-actions present non-linear and 
non-monotonic relations with power and throughput.

– Moreover, the objective function values of two different nearby 
actions are correlated.

Proposal:

– Bayesian online learning.

– We propose two algorithms: BP-vRAN and SBP-vRAN
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Bayesian Online Learning Solutions

Function estimator: Gaussian Process (GP)

Context-action pair:

Noisy observations

Corresponding to the points

The posterior distribution of the objective function follows a GP 
distribution with mean and covariance:

where

These equations allow us to estimate the distribution of unobserved 
values of            based on the prior distribution, the vector   ZT , and the 

function observations yT

BP-vRAN: Balancing performance and cost
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Bayesian Online Learning Solutions

Kernel function.

We need the kernel to be stationary and anisotropic.

We select the anisotropic version of Matérn kernel with 𝜈 =
3

2

Acquisition function.

We use the Upper Confidence Bound (UCB) method:

where

BP-vRAN: Balancing performance and cost

Distance between to point according the length 

scale vector
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Bayesian Online Learning Solutions
BP-vRAN: Balancing performance and cost

The contextual regret is upper bounded with high probability:
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Bayesian Online Learning Solutions

– Similar formulation to BP-vRAN.

– We use two GPs to approximate: 1) reward function; 2) consumed power

– We use the second one to create a set of safe actions:

– And then, we use UCB over this set:

We have observed empirically that given the structure of our problem and 
thanks to UCB exploration, SBP-vRAN expands the safe set efficiently.

SBP-vRAN: Safe Bayesian Optimization
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Bayesian Online Learning Solutions
SBP-vRAN: Safe Bayesian Optimization
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Experimental evaluation
Convergence evaluation

BP-vRAN

SBP-vRAN
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Experimental evaluation
Performance in real network contexts

Realistic context pattern:
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Experimental evaluation
Performance in real network contexts

BP-vRAN

SBP-vRAN
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Conclusions

– We have presented an in-depth experimental study of the energy behavior of vBSs.

– Our results made evident the complex relationship between performance, power consumption, and 
different vBS configurations.

– Such complexity can only be tamed with data-driven machine-learning solutions.

– We have proposed an online learning framework to achieve two goals:

• Balance performance and power consumption in unconstrained platforms such as data centers.

• Maximize performance subject to power constraints vBS, e.g., PoE.

• We proposed two algorithms based on Bayesian optimization: BP-vRAN and SBP-vRAN

– They achieve the goals with theoretical performance guarantees, with high data-efficiency and 
convergence speed, and respecting power constraints even during learning.

– We presented a thorough experimental evaluation of our algorithms using real-life traffic load and signal 
quality patterns. Our results demonstrated the ability of our approach to converge quickly to optimal 
policies.

– We have released the source code of BP-vRAN and SBP-vRAN along with the dataset used in this work to 
foster future research in this area.
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