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ABSTRACT
Supporting Edge AI services is one of the most exciting features of
future mobile networks. These services involve the collection and
processing of voluminous data streams, right at the network edge,
so as to offer real-time and accurate inferences to users. However,
their widespread deployment is hampered by the energy cost they
induce to the network. To overcome this obstacle, we propose a
Bayesian learning framework for jointly configuring the service and
the Radio Access Network (RAN), aiming to minimize the total en-
ergy consumption while respecting desirable accuracy and latency
thresholds. Using a fully-fledged prototype with a software-defined
base station (BS) and a GPU-enabled edge server, we profile a state-
of-the-art video analytics AI service and identify new performance
trade-offs. Accordingly, we tailor the optimization framework to
account for the network context, the user needs, and the service
metrics. The efficacy of our proposal is verified in a series of exper-
iments and comparisons with neural network-based benchmarks.
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1 INTRODUCTION
There is growing consensus that the next generation of mobile
networks need to support AI services at the edge. This involves the
collection, transfer and processing of data flows, with the aim to
provide real-time inferences to end users ranging from handheld
and small IoT devices to moving nodes (e.g. drones). Representa-
tive examples are mobile video analytics (MVA), which are used in
AR/VR services [15], cognitive assistance applications [43], surveil-
lance systems [68], and other similar AI services. The core task of
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MVA services is that user devices send video frames to the network,
which needs to process them and transmit back accurately-detected
depicted objects, or extract other important information [25].

These services are equally exciting for the users as they are chal-
lenging to implement. Namely, in MVA services the network’s role
is not confined to transferring data from one point to another, nor
it suffices to support in-network processing of the data streams.
Instead, the network needs to directly optimize the AI service per-
formance, which involves the criteria of accuracy (confident infer-
ences), end-to-end latency (fast inferences), and task throughput
(inferences/sec) in a resource-efficient fashion. This latter require-
ment is crucial since AI services create voluminous data flows,
involve heavy computations and consume large amounts of energy
[59]. In fact, energy consumption is not only one of the most preva-
lent operating expenditures for mobile networks [45]1 but has been
also identified as a risk hampering the penetration of the inherently
energy-demanding AI-based mobile services. Besides, energy is the
common physical resource that all pertinent network operations,
namely computations and transmissions, consume and its prudent
management is imperative also from a performance point-of-view.

Clearly, in order to realize Edge AI services we need to devise a
systematic methodology for energy-aware control of the communi-
cation and computing resources of the network. Hence, the goal of
this paper is to design and evaluate experimentally an orchestration
framework that manages the resources of base stations and edge MVA-
based AI services following two joint optimization goals: (𝑖) minimize
the energy toll associated with the service and the mobile network
operation, and (𝑖𝑖) meet service performance indicator targets.

To shed light on this problem, we have built a fully-fledged
prototype system with a software-defined base station (BS) (using
srsRAN suite [26]) and a GPU-enabled edge server that offers a
MVA service to mobile users. We measure the joint impact that
resource control policies at the user device (video frame resolution),
the BS (radio configuration) and the server (GPU speed) have on
the service accuracy and on end-to-end latency (quality of service
performance indicators), and on power consumption (cost).

Our experiments show that, unlike other services, performance
is highly volatile and depends on the underlying hardware, the
AI service configuration, and even the actual user data. Further-
more, these services include a wide range of configuration options,
e.g., selecting different architectures of Neural Networks, differ-
ent processing equipment, or adjusting the data sources. All these
parameters affect in an unknown way the latency and accuracy
performance, which in turn renders traditional network resource
orchestration techniques ineffective for this problem.

1For instance, China Mobile committed to reduce the overall energy consumption per
unit of telecom business by no less than 6% in 2021 [12], and Verizon and Vodafone
have set targets to reach net zero energy emissions by 2040 [28].
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In order to overcome these challenges, we propose an optimiza-
tion framework for orchestrating jointly these decisions that is
oblivious to the underlying hardware and user data streams. This
robustness is achieved by using a non-parametric Bayesian on-
line learning algorithm, named EdgeBOL (Edge Bayesian Online
Learning), that deals with different system states and performance
constraints. We formulate a problem for minimizing the power
consumption of the overall system while satisfying hard service
accuracy and latency requirements. Finally, we verify the efficacy
of EdgeBOL using a prototype, real datasets, and compare EdgeBOL
with state-of-the-art (SoA) benchmarks [4]. Our solution shows
an unprecedented convergence speed and satisfies the service (sto-
chastic) constraints with very high probability.

To summarize, the key contributions of this paper are:
• We propose the new problem of jointly controlling RAN re-
sources and edge AI service parameters, aiming to minimize
the overall energy cost while meeting hard performance targets.
• We build a prototype and conduct extensive experiments with a
representativeMVA application that reveal new trade-offs about
the service performance and the system energy consumption.
• We design a Bayesian learning framework that learns in real
time the optimal configuration of the system, adapting to dif-
ferent contexts, user needs, and AI services.
• Finally, we evaluate EdgeBOL using our experimental platform
and actual datasets, and compare it with a SoA neural network-
based reinforcement learning algorithms.
Paper Organization. §2 discusses related works; §3 presents

motivating experimental findings; in §4 we formulate the orches-
tration problem and in §5 introduce the learning algorithm which
is evaluated in §6. We conclude in §7.

2 RELATEDWORK
There are recent studies about the deployment of AI services, in
particular video analytics, at the network edge. Some of them aim
to improve the performance using, e.g., adaptive encoding, caching
or visual tracking [31, 39, 73]. Other studies measure the trade-
off between accuracy and latency, which is key for real-time AI
services [34, 55]. Regarding the resource orchestration in these
systems, [32] and [10] search greedily in real-time for the most
resource-prudent configuration; [53] and [69] allocate computing
resources and decide the image compression (or, video quality) and
neural network model; and [36] attempts to minimize the energy
consumption and service latency. In turn, Nuberu [23] presents a
reliable virtualized base station design. These important experimen-
tal studies, however, do not account for the coupling of the mobile
network with the edge servers. Our experiments reveal that their
joint orchestration is imperative for these demanding AI services.

Orchestrating the resources of mobile networks for traditional
systems is a well-studied problem. For instance, [6], [65] select the
modulation and coding scheme (MCS) and airtime to maximize
throughput, using predetermined models for the operation func-
tions; yet, these models are platform-dependent. On the other hand,
model-free approaches [72] are more versatile and have been used,
e.g., for slicing [7], throughput forecasting [54], and energy cost
reduction [3]; but suffer from the lack of (accurate) training data.
Reinforcement learning (RL) is yet another option and has been

used for interference coordination [1], network diagnostics [44], or
SDN control optimization [74]. These works have been derived for
legacy base stations, and without accounting for the performance
requirements of AI services such as the accuracy of inferences.

Our approach for controlling the virtualized Base Station (vBS)
and the edge server is fundamentally different from the above
works as it relies on Bayesian contextual bandit algorithms. Such
approaches have been employed to adjust video streaming in mo-
bile networks [5], to optimize BS handovers [13], and to control
mmWave networks [29]. Perhaps the most closely related work
to ours is [4], which assigns CPU time to virtualized BSs, but this
focuses on data transfers (not accuracy or end-to-end latency). Be-
sides, we follow a different algorithmic approach based on the
contextual Bayesian online optimization [33] that combines bandit
exploration with Gaussian Processes (GPs) [66]. Thus, we use the
uncertainty in the estimations provided by the GPs to efficiently
explore new configurations and speed up convergence. We extend
here this approach by including the AI service-related context, and
to consider the vBS and edge server power consumption. These
ideas have been proven very successful for automated machine
learning problems [60], and we show here that they hold great
promise for automated resource orchestration in mobile networks.

3 EXPERIMENTAL ANALYSIS
We have performed an exhaustive set of experiments using the
testbed described in detail in §6.1. In a nutshell, the testbed is
comprised of a 3GPP R10-compliant LTE base station (BS), a user
equipment (UE) generating service requests via the BS to a well-
known object recognition service, and an off-the-shelf server with
an NVIDIA GPU running the service. Each request consists of an im-
age with a variable number of objects from the COCO dataset [38].
The images are sent to the service via the uplink channel of the LTE
interface, and the service returns to the user a bounding box and
a classification label for each identified object in the image. This
information is sent via the downlink channel of the LTE interface.
Each measurement shown as a dot in the figures of this section is an
average of 150 images. The dataset collecting all the measurements
shown in this section is available online2 to enable reproducibility
and to facilitate further research in this area. Motivated by O-RAN
specifications [24], we focus on configuration policies set by an or-
chestrator that operates at second-level timescale (Non-Real-Time
RAN Intelligent Controller in O-RAN). These policies are rules
that must be respected by lower-level controllers that operate at
millisecond-level timescale (or faster) — and which are orthogonal
(and beyond the scope) of our study. In the following, we analyze the
trade-offs between different configuration policies and performance
indicators that are relevant to the system stakeholders: (𝑖) quality
of service experienced by the end-users, (𝑖𝑖) the energy associated
with the service provider, and (𝑖𝑖𝑖) the energy cost associated with
the mobile network operator.

Precision, delay, and image resolution.We start off by analyz-
ing two metrics of interest for the user’s quality of service: the
service’s performance to recognize objects and the service delay,
formally introduced in Performance Indicator 1 and 2, respectively.

2https://github.com/jaayala/energy_edge_AI_dataset

https://github.com/jaayala/energy_edge_AI_dataset
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Figure 1: Mean average precision (mAP) vs. service delay for
images with different resolutions.

Performance Indicator 1 (Service delay). End-to-end delay
that includes the image pre-processing at the user side, its transmis-
sion, the processing at the server (GPU delay), and the return of the
bounding boxes and labels.

Performance Indicator 2 (Mean Average Precision). The
service’s precision is estimated by the Mean Average Precision (mAP),
a popular metric in computer vision for object recognition applica-
tions [19]. On the one hand, precision is defined as the ratio of true
positives over all positive classifications. On the other hand, the recall
measures how well these positives are identified by calculating the
ratio between true positives over the sum of true positives and false
negatives. The Intersection over Union (IoU) measures the overlap
between the calculated bounding box and the ground truth. IoU values
above a threshold, which in our case is set to 0.5, trigger a true positive.
Then, given a set of images, the Average Precision (AP) corresponds to
the area below the precision-recall curve. Finally, the mAP is calcu-
lated as the mean AP over all object categories, hence ranges from 0
(worst performance) to 1 (best performance).

According to our measurements, the most relevant feature that
affects the mAP is the image resolution, defined in Policy 1.

Policy 1 (Image resolution). This policy sets the average encod-
ing of every image (number of pixels) generated by the users, which
can be enforced by the service. In our experiments, the maximum
(100%) resolution is 640x480 pixels. Note that, at any give time in-
stance, the resolution of one image, set by the service application, may
be larger or smaller than the policy as long as the average across the
whole period and users respects the policy threshold.

We illustrate this in Fig. 1, which shows the trade-off between ser-
vice delay and mAP for the COCO images dataset encoded with dif-
ferent resolutions. The remaining configuration policies (described
later) are fixed so service delay is minimum. The results are rather
intuitive: (𝑖) Higher-resolution images carry more pixels encoded
in a larger amount of data. Therefore, higher-resolution images
incur higher delay due to longer transmission time over the radio
interface. (𝑖𝑖) Lower-resolution images cause the service to provide
lower mAP performance because they carry less useful information
for the object detection engine. Specifically, in our experiments, a
72% improvement in service delay is associated with a reduction of
precision that ranges between 10% to 50%.

Delay, energy consumption, and radio policies. There also ex-
ists a trade-off, which naturally appears in many resource control
problems [16], between the quality of service and the associated
energy cost to the provider of such service. To explore this trade-off,
we introduce a policy that governs the allocation of radio resources,
defined as Policy 2, and an additional metric that assesses part of
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Figure 2: Service delay vs. server’s power consumption for
images with different resolutions and radio policies.
the aforementioned cost: the server’s power consumption, defined
as Performance Indicator 3.

Policy 2 (Radio Airtime). This radio policy imposes a constraint
on the amount of radio resources (duty cycle) the BS allocates to the
service’s traffic (i.e., for all users). The MAC layer radio scheduler,
which operates at millisecond-level granularity then must allocate
radio resources (which may be different across users depending on
their instantaneous channel quality) such that the threshold set by
the policy is respected. Due to the nature of this AI service, we focus
on uplink communication.

Performance Indicator 3 (Server power consumption). Power
consumption associated with computational load of the service’s re-
quests, which is dominated by the GPU power consumption.

Fig. 2 depicts the service delay vs the server power consumption,
for different airtime radio policies and image resolutions. Similarly
as before, higher-res images increase service delay due to the longer
transmission time of requests. We now observe that this occurs
irrespective of the radio policy configuration. However, the selected
radio policy has an important impact on service delay as well.
This is rather expected since lower airtime implies lower usage of
radio resources, which further increase the transmission time of the
requests at the radio interface. Specifically, our experiments show
that an 80% increase of the airtime improves the delay between 65%
and 80%. Concerning the server’s power consumption, lower-res
images and lower radio resource allocations increase this cost for
the service provider. Specifically, there is a 56% increase in power
consumption for an 80% increase in radio time resource; a similar
increase attained when there is a 75% increase in image resolution.
This is due to the fact that increasing the radio resources allow the
user to send a higher rate of requests in a similar way than low-res
images do, which ultimately increase the workload assigned to the
service’s resources (the GPU in this case).

Delay, energy costs, and service policies. We study the impact
of the computing allocation policies on the service quality of service.
To this end, we define an additional configuration policy.

Policy 3 (GPU speed). The server’s policy is a GPU power limit
that adapts the processing speed of a GPU (or a pool of GPUs) in a
slice to meet the adopted power constraint. The GPU controller (e.g.,
NVIDIA driver) may change the GPU speed at any given time (e.g.,
for different video frames) as long as the GPU power set by this policy
is respected.

In our experimental setup, the GPU speed can be set through
a configuration parameter available in Nvidia GPU drivers. Fig. 3
(top) depicts the service delay and the server’s power consumption
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Figure 3: Delay vs. server’s power consumption for images
with different resolutions and GPU policies.

for several image resolution configurations. We now fix the airtime
to 100% and vary the policy allocating computing resources. A
higher amount of computing resources increases the server’s power
consumption, as we are relaxing the power limit imposed to the
GPU. We observe that low-res images contribute to increasing the
server’s power consumption as the rate of requests also grows.
However, it is interesting to note that higher-res images ease the
work on the GPU, as evidenced by Fig. 3 (bottom), which shows
the delay associated with the GPU tasks only. All in all, despite
this improvement in the GPU delay, the corresponding increase in
transmission delay when using higher-res images dominates. It is
important to observe that, while this is true in our experimental
testbed, it may well be different for diverse deployments (e.g. a more
energy-efficient GPU, or a higher-bandwidth radio access network).
This motivates the need for learning algorithms that adapt to the
different deployments.

Precision, energy consumption, and image resolution. The
above trade-off between service delay and the server power con-
sumption (a cost to the service provider), certainly appears for other
user-related metrics, such as the mAP introduced earlier. To assess
this, Fig. 4 shows the mAP achieved by the service as a function of
the server’s power consumption for a variable set of image reso-
lutions and the largest amount of radio and computing resources
to minimize delay. The figure confirms that the service provider’s
cost is also dependant on the mAP performance. Importantly, how-
ever, the relationship with the mAP is substantially different to
that with the service delay. In this case, higher mAP performance
actually requires less power consumption from the service provider.
The reason lies upon the fact that higher-res images (which render
higher mAP) facilitate the object detection task and hence require
less computing resources as shown in Fig. 3 (bottom).

BS power consumption, radio policies, and image resolution.
Finally, the costs associated with the network operator (our third
stakeholder) are necessarily driven by the amount of radio resources
invested into the service’s pipeline. To analyze this, we introduce
an additional policy, motivated by [4] in the context of virtualized
RANs, which is defined as Policy 4, and Performance Indicator 4,
reflecting part of operational costs of the network operator.
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Figure 4: Mean average precision vs. server’s power con-
sumption for images with different resolutions.
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Figure 5: BS power consumption vs. radio policies for images
with different resolutions.
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Figure 6: BS power consumption vs. radio policies for images
with different resolutions and 10x higher load.

Policy 4 (Radio MCS). This policy imposes a constraint on the
maximum modulation and coding scheme (MCS) eligible by the BS
to transport the service’s data over the air. Like before, the MCS se-
lected by the MAC layer of the BS may be lower than this bound for
individual users depending on their channel state.

Performance Indicator 4 (Base Station power consump-
tion). Power consumption associated with processing the baseband
unit in a virtualized RAN environment.

To analyze these, we plot in Fig. 5 the power consumption mea-
sured at the baseband unit of the BS for a variable setting of airtime
and MCS radio policies, and different image resolutions. We first
observe that lower-resolution images consume less amount of radio
resources and therefore have a smaller footprint over the BS’ power
consumption. Second, a higher investment on radio resources (air-
time) actually induces higher power consumption because it allows
the user to issue a higher rate of service requests (images). Finally,
perhaps surprisingly, higher MCS policies actually cause lower BS
power consumption. The reason is that the data load at the BS
is relatively low compared to the amount of bandwidth available
at the BS, e.g., higher-res images with 100% airtime generate up
to 2.8 Mb/s, compared to a capacity of around 50Mb/s (SISO LTE
@ 20MHz bandwidth). In this scenario, despite the fact that LTE
subframes modulated with higher MCS incur higher instantaneous
power consumption, they process the load faster, which pays off in
terms of power consumption over the long run.

From these results and the BS’s point of view, there is no reason
to use MCS lower than the maximum possible. However, this de-
pends also on the network load, whichmay be very different for, e.g.,
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multiple users or other services. To demonstrate this, we emulate a
scenario with 10x more load, and present the same plot in Fig. 6.
Differently now, we observe that the MCS policy has a negative
impact on the BS power consumption for higher-resolution images
whereas lower-resolution images cause lower power consumption
for higher MCS policies. This motivates the need for learning algo-
rithms that adapt the system to the service requirements.
Conclusion: Our system consists of a large number of highly-
coupled parameters with non-trivial relationship with the perfor-
mance and energy cost. As a consequence, we resort to model-free
contextual bandit methods, an area of machine learning applied
in many control problems, to design a controller that adapts au-
tonomously to context changes and the underlying platform.

4 SYSTEM AND PROBLEM FORMULATION
4.1 System
We consider a GPU-powered edge server providing an AI service
through a radio access network. Specifically, we consider an ob-
ject recognition service that can be used, for instance, for security
surveillance or fault detection in industrial chains. We assume that
a slice dedicated for this service is created including virtualized
Base Station (vBS) and the edge server [40, 42]. This is illustrated
by the orange boxes in Fig. 7. The service operation is as follows:
users capture images that are sent to the edge server through the
uplink of the radio interface of the vBS. Then, the server’s GPU
processes the incoming data and generates a response, which is
sent back to the users through the vBS downlink.

The workflow of EdgeBOL is also simple: EdgeBOL periodically
observes the context (we provide an approprite definition later),
orchestrates the resources assigned to the wireless access and the
GPU-powered service via a set of control policies, and uses a cost
metric aggregating key performance indicators of the system to
make better decisions over time. To this end, we follow closely the
framework of O-RAN [51], a carrier-led alliance of operators and
manufacturers to build open and intelligent RAN solutions [24].

As shown in Fig. 7, EdgeBOL interacts with O-RAN’s Non-Real-
Time RAN Intelligent Controller (RIC) to enforce radio control
policies in O-RAN compliant eNBs or gNBs (O-eNBs/O-gNBs):

• An rApp (within O-RAN’s non-RT RIC), as defined in [50],
interacts with the learning agent and handles O-RAN’s A1
interface (specifically, the A1’s Policy Management Service)
as specified in [48, 49, 52] to deploy the MCS and radio
airtime policies defined above.
• An xApp handles the A1-P service from O-RAN’s near-RT
RIC side, and uses an E2 interface to forward radio policies
to the base station, including O-DU, O-CU and O-RU in case
of 5G (see Sections 4.3.4-4.3.6 in [51]), and O-eNB in case of
4G (see Section 4.3.7 in [51]).
• The E2 interface, defined in [47], is also used to gather vBS
KPIs (power consumption, in our case), which is forwarded
to the non-RT RIC through the O1 interface. Then, a sec-
ond xApp manages data KPIs received from the base station,
which in our case consists of samples of the BS power con-
sumption, and forwards it to the learning agent.

SMO Framework
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Figure 7: O-RAN compliant system architecture.

We assume that both the O-eNB/O-gNB and the GPU server can
implement the configured policies (through radio scheduling at the
MAC layer for the former, through a driver such as NVIDIA’s for the
latter). This framework allows us to use machine learning to solve
our problem. Namely, we formulate the problem as a contextual
multi-armed bandit or contextual bandit.

4.2 Problem Formulation
Let us formalize in the following the context space, action space,
and the performance indicators in our system.

Contexts.We define the context at each time period 𝑡 as 𝑐𝑡 :=
[𝑛𝑡 , 𝑐𝑡 , 𝑐𝑡 ] ∈ C, where 𝑛𝑡 is the number of users in the slice, and
𝑐𝑡 and 𝑐𝑡 are the mean and the variance of the UL channel quality
indicator (CQI) across all users in the slice during the previous
period, and C is the context space.

Control policies. LetH denote the set of possible image reso-
lutions; A the set of possible airtime configurations (uplink radio
resources) that can be assigned; Γ the possible GPU speed configu-
rations; andM the set of all possible MCS policies as defined above.
Hence, we let 𝑥𝑡 := [𝜂𝑡 , 𝑎𝑡 , 𝛾𝑡 ,𝑚𝑡 ] ∈ X := H ×A × Γ ×M denote
the control policy selected at time period 𝑡 . The GPU speed is con-
figured in the same machine where the learning agent runs, the
airtime and the MCS policies can be sent to the vBS through the A1-
P interface of O-RAN architecture [51], and the image resolution is
indicated to the user using the application of the service. We focus
on uplink radio policies because, as our experiments confirm, such
AI services have little impact on the downlink as the data surge
goes usually upstream with only simple information (bounding
boxes, labels) flowing downstream.

Performance indicators. Similarly, our performance indica-
tors were introduced in §3. The service delay experienced by user
𝑖 is denoted by 𝐷𝑖 (𝑐, 𝑥), and the mAP is denoted by 𝑄𝑖 (𝑐, 𝑥). We
then let 𝑑 (𝑐, 𝑥) := max𝑖 𝐷𝑖 (𝑐, 𝑥) and 𝜌 (𝑐, 𝑥) := min𝑖 𝑄𝑖 (𝑐, 𝑥) denote
the highest delay and lowest mAP, respectively, across all users.
The consumed power at the edge server is denoted by 𝑝𝑠 (𝑐, 𝑥), and
the consumed power at the vBS is denoted by 𝑝𝑏 (𝑐, 𝑥). Note that in
practice the observations of the performance indicators are noisy
(even in static setups) since the system is stochastic in nature. Re-
markably, our solution intrinsically deals with noisy observation as
we detail in the next section. Henceforth, we denote by 𝑑𝑡 (𝑐𝑡 , 𝑥𝑡 ),
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𝜌𝑡 (𝑐𝑡 , 𝑥𝑡 ), 𝑝𝑠𝑡 (𝑐𝑡 , 𝑥𝑡 ), and 𝑝𝑏𝑡 (𝑐𝑡 , 𝑥𝑡 ) the noisy observations of our
performance indicators at time period 𝑡 . Feedback from the data
plane components including all these performance metrics is re-
ceived by the LA at the end of each time period 𝑡 , as explained above.
We assume EdgeBOL is working in a pre-production phase where
the labels of the images are available for training. Alternatively, we
can easily integrate other real-time precision metrics that consider
the confidence output of the object recognition algorithms [22].

4.3 Online Learning formulation
Energy consumption is one of the main operational cost compo-
nents of mobile networks, and its impact is only expected to grow
further with the deployment of AI/ML services that raise further
this toll. This has been made explicit in a number of reports from
vendors, manufacturers and operators [11, 12, 28]. Hence, our goal
is to minimize the power consumption of the whole system (vBS
and edge server) subject to performance constraints of the service.
Depending on the form factor of the vBS and the configuration
of the server (i.e., GPU model, motherboard, etc.) the consumed
energy of each entity may have a different order of magnitude.
Moreover, the cost associated to energy consumption may vary
depending on the scenario. In regular small-cell based scenarios,
such cost may be related to the price of electricity, which may vary
between day and night depending on the rates set by the power
suppliers in each country. In other scenarios, such as those based
on Power over Ethernet (PoE) or a solar-powered vBS, this cost may
reflect the scarcity of the energy resource for the RAN. In order
to capture these different scenarios, we define the following cost
function:

𝑢 (𝑐, 𝑥) = 𝛿1𝑝
𝑠 (𝑐, 𝑥) + 𝛿2𝑝

𝑏 (𝑐, 𝑥) (1)
where 𝛿1 and 𝛿2 are the costs of the power at the edge server and
the vBS, respectively, in monetary units per watt (mu/W).

On the other hand, we consider performance constraints at
service-level, going a step beyond other works considering lower-
level performance requirements (e.g., [4]) such as data rate or delay.
The mapping between context-action pairs and the service-level
performance indicators is very complex and there are no available
models, as we detailed in the experimental results of §3. For that
reason, we learn them from observations. For our object recogni-
tion service, we consider two constraints: (𝑖) a maximum service
delay denoted by 𝑑𝑚𝑎𝑥 , which is directly related to the frame rate
(number of images per second) that the user is going to process,
and (𝑖𝑖) a minimum mAP denoted by 𝜌𝑚𝑖𝑛 which indicates a lower
bound on how accurate is the service in detecting the objects. We
formulate the problem as follows:

min
{𝑥𝑡 }𝑇𝑡=1∈X

lim
𝑇→∞

1
𝑇

𝑇∑
𝑡=1

𝑢𝑡 (𝑐𝑡 , 𝑥𝑡 ) (2)

s.t. 𝑑𝑡 (𝑐𝑡 , 𝑥𝑡 ) ≤ 𝑑𝑚𝑎𝑥 , ∀𝑡 ≤ 𝑇
𝜌𝑡 (𝑥𝑡 ) ≥ 𝜌𝑚𝑖𝑛, ∀𝑡 ≤ 𝑇

Note, that the service constraints are satisfied for the user experi-
encing the worst service as 𝑑 (𝑐, 𝑥) := max𝑖 𝐷𝑖 (𝑐, 𝑥) and 𝜌 (𝑐, 𝑥) :=
min𝑖 𝑄𝑖 (𝑐, 𝑥). The nature of this problem calls for a contextual ban-
dit formulation, i.e., we need to select a control policy 𝑥𝑡 every
time period 𝑡 , given a context 𝑐𝑡 . Indeed, the optimal decision at

each 𝑡 only depends on the current context 𝑐𝑡 , and the performance
indicators are observed at the end of each time period. Our ob-
jective is to minimize the cost in the long-term while satisfying
the constraint at each time period. We would like to remark that
other alternative formulations can be considered. For instance, we
could consider power-constrained vBSs or a edge computing power
budget by including the power consumption targets as constrains,
while minimizing latency and maximizing accuracy. The flexibility
of our framework allows us to implement any of these different
formulations with minimal changes.

4.4 Practical Considerations & Design decisions
Let us discuss some decisions made in the design of EdgeBOL to
make it work in practice. EdgeBOL uses a statistical characteriza-
tion of the channel state of the users as an input context. That is,
the context comprises the number of users and the mean and the
variance of the uplink CQI, as defined in §4.2. The straightforward
approach is to use the full channel information, i.e., the CQI of
each active UEs. However, this has several disadvantages. First,
the complexity of the problem grows with the number of users.
The higher the number of users, the larger the dimensionality of
the context space, and therefore the higher the amount of data
needed by the algorithm to converge (curse of the dimensionality).
And second, the dimensionality of the context space changes with
the number of users (e.g., 4 dimensions for 3 users, 7 dimensions
for 6 users, etc). To solve this, we would need to run a different in-
stance of EdgeBOL for each context space dimensionality, increasing
even more the data requirements for convergence. The approach
considered in EdgeBOL to handle multiple users by aggregating
statistics overcomes these disadvantages with a negligible impact
on performance, as validated empirically in §6.4.

Furthermore, we have assumed above a pre-configure slice host-
ing the service. Nevertheless, EdgeBOL may be extended to jointly
optimize multiple AI services concurrently with minor changes: (𝑖)
expand the context and action spaces for all the AI services; (𝑖𝑖) add
the new KPI constraints for each service; and (𝑖𝑖𝑖) add additional
constraints on the coupled resources (i.e., GPU and radio). Although
this solution seems promising from an optimality point of view,
the dimension of this extended problem challenges its practicality.
Specifically, the dimensionality of the context-action space becomes
4𝑆 + 3, where 𝑆 is the number of AI services; and the number of
constraints raises to 2𝑆 + 2 – assuming each service requires two
performance constraints. When the dimensionality of the problem
increases, the amount of learning data needed grows exponentially
with the problem’s dimension. Thus, although it might be a feasible
approach in some carefully-crafted scenarios, it becomes intractable
in real-life large-scale deployments (i.e., will not converge in a rea-
sonable amount of time). This is a well-known problem in machine
learning called the curse of dimensionality [63].

In contrast, EdgeBOL is designed as a practical solution for most
systems. For that purpose, we focus on the case where each AI
service is hosted by pre-configured network slices [70, 71]. This
approach addresses the scalability problem mentioned above (we
only have to deal with one service) and is in line with the trend
followed by the industry today, which is realizing network slicing to
build virtual networks optimized for specific services and has been
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standardized by 3GPP [27, 41, 64]. Note that network slices can be
re-configured in the timescale of hours or minute [14, 30, 46]. For
that reason, our solution (that operates in the timescale of seconds)
does not modify the slice configuration but jointly optimizes service
parameters and resource allocations within the slices, a problem
that is faced by the industry today when using network slicing.
Hence, we consider our proposed solution a flexible approach to
successfully address the efficiency vs. scalability challenges just
described.

5 BAYESIAN ONLINE LEARNING
EdgeBOL is an online learning algorithm that solves the contextual
bandit problem defined in §4.3. Most of the existing contextual ban-
dit algorithms assume a linear relationship between the contexts-
control space and the associated reward [35, 57], or a certain reward
function structure [21, 58]. However, as the measurements in §3
revealed, our performance metrics have a non-linear and almost
arbitrary structure, though with high correlation with our control
policies. That is, a small change in one of the policies (e.g., image
resolution) will produce a small change in the service delay and
the consumed power. This allows us to get information about un-
observed context-control points by observing nearby points, hence
reducing the exploration time.

Based on these observations, we propose a Bayesian online learn-
ingmethod thatmodels the cost and constraints as samples of Gauss-
ian Processes (GPs) over the joint context-control space. This non-
parametric estimator deals with the aforementioned non-linearities
and correlations, and quantifies the function estimation uncertainty,
addressing effectively the exploration vs. exploitation trade-off.

Function approximator. In order to estimate the cost and con-
straint functions we use GPs, which consist of a collection of ran-
dom variables that follow joint Gaussian distributions [66]. Let
𝑧 ∈ Z = C×X denote a context-control pair. We model each of the
unknown functions as a sample from𝐺𝑃 (𝜇 (𝑧), 𝑘 (𝑧, 𝑧′)), where 𝜇 (𝑧)
is its mean function and 𝑘 (𝑧, 𝑧′) denotes its kernel or covariance
function. W.l.o.g., we assume 𝜇 := 0 and 𝑘 (𝑧, 𝑧′) < 1, which we
refer to as the prior distribution, not conditioned on data. Given the
prior distribution and a set of observations, the posterior distribution
can be computed using closed form formulas.

The sets of observations of the cost and constraint functions
at points 𝑍𝑇 = [𝑧1, . . . , 𝑧𝑇 ] up to time period 𝑇 are denoted by
𝑦
(0)
𝑇

= [𝑢1, . . . , 𝑢𝑇 ],𝑦 (1)𝑇
= [𝑑1, . . . , 𝑑𝑇 ],𝑦 (2)𝑇

= [𝜌1, . . . , 𝜌𝑇 ], respec-
tively, assuming i.i.d. Gaussian noise ∼ 𝑁 (0, 𝜁 2

(𝑖) ). The posterior
distribution of these functions follows a GP distribution with mean
𝜇
(𝑖)
𝑇
(𝑧) and covariance 𝑘 (𝑖)

𝑇
(𝑧, 𝑧′):

𝜇
(𝑖)
𝑇
(𝑧) = 𝑘 (𝑖)

𝑇
(𝑧)⊤ (𝐾 (𝑖)

𝑇
+ 𝜁 2
(𝑖) 𝐼𝑇 )

−1𝑦 (𝑖)
𝑇

(3)

𝑘
(𝑖)
𝑇
(𝑧, 𝑧′) = 𝑘 (𝑖) (𝑧, 𝑧′) − 𝑘 (𝑖)

𝑇
(𝑧)⊤ (𝐾 (𝑖)

𝑇
+ 𝜁 2
(𝑖) 𝐼𝑇 )

−1𝑘 (𝑖)
𝑇
(𝑧′) (4)

where 𝑘 (𝑖)
𝑇
(𝑧) = [𝑘 (𝑖) (𝑧1, 𝑧), . . . , 𝑘 (𝑖) (𝑧𝑇 , 𝑧)]⊤, 𝐾 (𝑖)𝑇

(𝑧) is a kernel
matrix defined as [𝑘 (𝑖) (𝑧, 𝑧′)]𝑧,𝑧′∈𝑍𝑇

, 𝐼𝑇 is the 𝑇 -dimension iden-
tity matrix, and 𝜁 2

(𝑖) the variance of noise in observations. Index
𝑖 denotes the objective function, with 𝑖 = 0 for the cost function,
𝑖 = 1 for the delay, and 𝑖 = 2 for the mAP. The distribution of
unobserved values of 𝑧 ∈ Z for function 𝑖 is computed from the

prior distribution, vector 𝑍𝑇 and the observed values 𝑦 (𝑖)
𝑇

using (3)
and (4).

Kernel selection. The kernel function shapes the GP’s prior
and posterior distributions having an impact on the algorithm’s
performance. It encodes the correlation of the function values for
every pair of context-control points. That is, the kernel characterizes
the smoothness of the functions [18].

The properties of the kernel function should be thoroughly se-
lected for each specific application and the underlying functions
that have to be learned. Thus, we use the experimental data ana-
lyzed in Sec. 3 to conclude that the kernel function should satisfy
two properties for all the functions: stationarity and anisotropic-
ity. This means that the kernel 𝑘 (𝑧, 𝑧′) is invariant to translations
in Z but not invariant to rotations in Z. The smoothness of the
kernel for each dimension of function 𝑖 is encoded in the length-
scale vector L (𝑖) = [𝑙 (𝑖)1 , . . . , 𝑙

(𝑖)
𝑁
], where 𝑁 indicates the number

of dimensions ofZ. The distance between two points based on the
length-scale vector is given by

𝑑 (𝑖) (𝑧, 𝑧′) =
√
(𝑧 − 𝑧′)⊤ (𝐿 (𝑖) )−2 (𝑧 − 𝑧′), (5)

where 𝐿 (𝑖) = diag(L (𝑖) ) is a diagonal matrix of the length-scale
vector. In order to satisfy the properties stated above, we select the
Matérn kernel on its anisotropic version [66]. Moreover, following
standard practice, we particularize it with parameter 𝜈 = 3

2 (details
in [66]), indicating that the function is at least once differentiable.
Thus, the expression of the kernel can be particularized as follows:

𝑘 (𝑖) (𝑧, 𝑧′) = (1 +
√

3𝑑 (𝑖) (𝑧, 𝑧′)) exp(−
√

3𝑑 (𝑖) (𝑧, 𝑧′)). (6)

Note that althoughwe are using the same kernel for all the functions
(cost and constraints), their hyperparameters will vary depending
on its shape. In fact, the hyperparameters L (𝑖) and noise variance
𝜁 2
(𝑖) (eq. (3)-(4)) should be optimized for each function 𝑖 before run-
ning the algorithm by maximizing the likelihood estimation over
prior data. During execution, the hyperparameters shall remain
constant. This is because when the hyperparameters are optimized
using newly acquired data, it is not guaranteed that the GP’s con-
fidence interval will cover the true function within, causing the
optimization to fall into poor local optima [9].

Safe set. It is crucial to identify first which controls satisfy the
constraints, which, however, depends also on the context. For in-
stance, when the user’s channel quality decreases (the context
changes), the user uses a lower MCS, which increases the transmis-
sion time hence increasing the service delay. Therefore, the controls
that are suitable with high channel quality may not meet the delay
constraint with low channel quality. We define the safe set as the
set of policies that satisfy all the constraints for a given context 𝑐:

𝑆 (𝑐) =
{
𝑥 ∈ X | 𝑑 (𝑐, 𝑥) ≤ 𝑑𝑚𝑎𝑥 ∧ 𝜌 (𝑥) ≥ 𝜌𝑚𝑖𝑛

}
(7)

Nevertheless, the computation of the safe set is very challenging
for several reasons. Firstly, the observations of the performance
indicators are noisy due to the stochastic nature of the system, as
we observed in §3. And secondly, the number of available controls
|X| is usually very large in practice, making it unfeasible to explore
all controls for all possible contexts. For that reason, we use the
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GPs to compute an estimation of the safe set:

𝑆𝑡 =
{
𝑥 ∈ X | 𝜇 (1)

𝑡−1 (𝑐𝑡 , 𝑥) + 𝛽𝜎
(1)
𝑡−1 (𝑐𝑡 , 𝑥) ≤ 𝑑

𝑚𝑎𝑥 (8)

∧ 𝜇
(2)
𝑡−1 (𝑐𝑡 , 𝑥) − 𝛽𝜎

(2)
𝑡−1 (𝑐𝑡 , 𝑥) ≥ 𝜌

𝑚𝑖𝑛
}

where
(
𝜎
(𝑖)
𝑡 (𝑧)

)2
= 𝑘
(𝑖)
𝑡 (𝑧, 𝑧) (eq. (4)) and 𝛽 is a weighting param-

eter. Note that at each time period 𝑡 the point 𝑧𝑡 is observed and
the vectors 𝑍𝑡 and 𝑦

(𝑖)
𝑡 ∀𝑖 are updated consequently. Due to their

correlation, the posterior distribution of points near 𝑧𝑡 will vary
having an impact on the controls that will be included in the safe
set in 𝑡 + 1.

Acquisition function. It indicates, at each time period 𝑡 , which
control 𝑥𝑡 shall be used in the system given context 𝑐𝑡 . This task is
crucial for the convergence of the algorithm and needs to interleave
an exploration process in order to expand the safe set while seeking
a safe control with high performance. Many previous works have
proposed acquisition functions for constrained Bayesian optimiza-
tion [2, 8, 61, 62], but they do not consider contexts. To the best of
our knowledge, SafeOpt [8] is the only work considering contexts.
Unfortunately, although SafeOpt does provide theoretical perfor-
mance guarantees, we found in our experiments that its acquisition
function has overly slow convergence. This issue has been reported
in other works as well, e.g., [20]. Instead, we use the contextual
Lower Confidence Bound (LCB) proposed in [33] as an acquisition
function, but constrained to the safe set:

𝑥𝑡 = argmin
𝑥 ∈𝑆𝑡

𝜇
(0)
𝑡−1 (𝑐𝑡 , 𝑥) −

√
𝛽𝜎
(0)
𝑡−1 (𝑐𝑡 , 𝑥). (9)

Algorithm 1 summarizes the whole workflow EdgeBOL. At the
beginning of the time period 𝑡 , the context 𝑐𝑡 is observed (line 4).
Based on the observed context 𝑐𝑡 and the vectors 𝑍𝑡−1 and 𝑦 (𝑖)

𝑡−1∀𝑖
from the previous time period, the posterior distribution of all the
functions is computed using eq. (3)-(4) (line 5). Note that when
we do not have observations (𝑍0 = ∅, 𝑦 (𝑖)0 = ∅,∀𝑖) the posterior
distribution is equal to the prior distribution. Using the expectation
and uncertainty of the constraint functions and eq. (8), the safe
set 𝑆𝑡 is built (line 6). The control 𝑥𝑡 is selected from the safe set
𝑆𝑡 based on the posterior distribution of the cost function and the
acquisition function (line 7). At the end of the time period 𝑡 , all
the performance indicators are observed. Then, the cost function is
computed using eq. (1). Finally, the new context-control pair 𝑧𝑡 , the
value of the cost function 𝑢𝑡 (𝑐𝑡 , 𝑥𝑡 ) and the value of the constraint
functions (𝑑𝑡 (𝑐𝑡 , 𝑥𝑡 ) and 𝑝𝑡 (𝑐𝑡 , 𝑥𝑡 )) are added to their respective
vectors to generate 𝑍𝑡 and 𝑦

(𝑖)
𝑡 ∀𝑖 (lines 10-13). The source code of

EdgeBOL is publicly available online3.
Note that EdgeBOL does not expand explicitly the safe set like

in other works such as [8, 62]. These works propose an explicit
expansion of the safe set by intentionally exploring controls in
the boundary. The objective is to converge to the true safe set and
therefore to reach the optimal safe control. However, we found
that our acquisition function can both minimize the cost function
and expand the safe set. The reason is that control policies with
lower values of power consumption are usually in the boundary of
the constraint (e.g., they are associated with higher service delay).
Hence, when the acquisition function explores lower power controls
3https://github.com/jaayala/constrained_bayes_opt.

Algorithm 1 EdgeBOL

1: Inputs: Control Space X, kernel 𝑘 , 𝑆0, 𝛽 , 𝛿1, 𝛿2, 𝜌𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥

2: Initialize: 𝑍0 = ∅, 𝑦 (𝑖 )0 = ∅, ∀𝑖 .
3: for 𝑡 = 1, 2, . . . do
4: Observe the context 𝑐𝑡
5: Compute 𝜇 (𝑖 )

𝑡−1, 𝜎
(𝑖 )
𝑡−1 ∀𝑖 using eq. (3)-(4)

6: Estimate the safe set: 𝑆𝑡 = 𝑆0∪ {𝑥 ∈ X |𝜇 (1)𝑡−1 (𝑐𝑡 , 𝑥) +𝛽𝜎
(1)
𝑡−1 (𝑐𝑡 , 𝑥) ≤

𝑑𝑚𝑎𝑥 ∧ 𝜇
(2)
𝑡−1 (𝑐𝑡 , 𝑥) − 𝛽𝜎

(2)
𝑡−1 (𝑐𝑡 , 𝑥) ≥ 𝜌𝑚𝑖𝑛 }

7: 𝑥𝑡 = argmin𝑥∈𝑆𝑡 𝜇
(0)
𝑡−1 (𝑐𝑡 , 𝑥) −

√
𝛽𝑡𝜎

(0)
𝑡−1 (𝑐𝑡 , 𝑥)

8: Observe 𝑑𝑡 (𝑐𝑡 , 𝑥𝑡 ) , 𝜌𝑡 (𝑐𝑡 , 𝑥𝑡 ) , 𝑝𝑠𝑡 (𝑐𝑡 , 𝑥𝑡 ) , and 𝑝𝑏𝑡 (𝑐𝑡 , 𝑥𝑡 ) at the end
of the time period 𝑡

9: Compute the cost 𝑢𝑡 (𝑐𝑡 , 𝑥𝑡 ) = 𝛿1𝑝
𝑠
𝑡 (𝑐, 𝑥) + 𝛿2𝑝

𝑏
𝑡 (𝑐, 𝑥)

10: Update 𝑍𝑡 ← 𝑍𝑡−1 ∪ [𝑐𝑡 , 𝑥𝑡 ]
11: Update 𝑦 (0)𝑡 ← 𝑦

(0)
𝑡−1 ∪𝑢𝑡 (𝑐𝑡 , 𝑥𝑡 )

12: Update 𝑦 (1)𝑡 ← 𝑦
(1)
𝑡−1 ∪ 𝑑𝑡 (𝑐𝑡 , 𝑥𝑡 )

13: Update 𝑦 (2)𝑡 ← 𝑦
(2)
𝑡−1 ∪ 𝜌𝑡 (𝑐𝑡 , 𝑥𝑡 )

14: end for

it is indirectly exploring the boundaries of the constraint, reducing
its uncertainty and thus expanding the safe set. In other words, the
acquisition function exploits the problem structure to efficiently
expand the safe set, see §6.

Practical Issues. It is interesting to note that, if the performance
bounds (constraints) are very tight and the problem is infeasible,
the safe set will converge to the initial safe set, that is, lim

𝑡→∞
𝑆𝑡 =

𝑆0 (since 𝑆0 is always included in 𝑆𝑡 , Algorithm 1 line 5). This
might happen only for certain contexts, e.g., for very low channel
quality. In any case, EdgeBOL will select control policies from the
initial safe set 𝑆0, which are intentionally selected to be the ones
with the lowest delay, the highest mAP and, therefore, the highest
consumed power. On top of that, EdgeBOL is robust to changes
on the constraint settings, and hence can adapt if, for example,
the operator decides to relax them during the system runtime in
order to avoid such infeasibilities. We demonstrate this in the next
section. Finally, it is worth mentioning that the computation of the
posterior distribution in eq. (3)-(4) is 𝑂 (𝑁 3). However, we found
in our experiments that this does not introduce any delay since
we have a wide enough time window to update the control policy,
according to O-RAN specifications.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
Our prototype consists of a vBS, a user equipment (UE), a digital
power meter, and an edge server, Fig. 8. The vBS and UE include an
NI USRP B210 as radio unit (RU) and a general-purpose computer
(Intel NUCs with CPU i7-8559U@2.70GHz) deploying the near-RT
RIC (for the vBS) and the baseband unit (BBU), implemented with
the srsRAN suite [26] (which emulates an O-eNB for experimen-
tation). The vBS and UE are connected through SMA cables with
20 dB attenuators, and we adjust the transmission gain of the RU’s
RF chains to attain different uplink SNR values. Without loss of
generality, we set 20 MHz bandwidth for the LTE interface.

Our edge server is equippedwith a CPU Intel i7-8700K@3.70GHz
and a GPU Nvidia GeForce RTX 2080 Ti. The vBS and server are
connected using a switch with Gigabit Ethernet technology. To

https://github.com/jaayala/constrained_bayes_opt
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Figure 8: Experimental testbed.

measure the power consumption at the BBU and the server, we
use the digital power meter GW-Instek GPM-8213 with the GW-
Instek Measuring adapter GPM-001. The evaluated AI service is
implemented using Detectron2 [67], developed by Facebook, which
performs object recognition. Specifically, Detectron2 is configured
with a region-based convolutional neural network (Faster R-CNN)
[56] comprising a ResNet backbone with conv4 layers and a conv5
head with a total of 101 layers. The UE sends to server images from
the COCO data set we used in §3 through the LTE uplink. The
images are resized at the user side using the OpenCV library in
Python. The bounding boxes and object classes are computed by
Detectron2 and sent back to the UEs (LTE downlink).

We introduced two key srseNB modifications. First, we modified
the radio MAC scheduler to implement the two radio policies of §3.
Secondly, we integrated the O-RAN E2 interface as defined in [47] to
enforce the radio control policies (MCS and airtime) on-the-fly and
send consumed power consumption samples to the corresponding
xApp. For the latter, we have added code into srsRAN to collect this
information from the power meter. We have also implemented a
proof-of-concept Near-RT RIC and Non-RT RIC with the interfaces
mentioned in §4 and as defined in [48–50, 52].We configure the GPU
speed by using the Nvidia driver that allows us to set the maximum
power management limit, ranging between 100 and 280W. This
runtime configuration does not affect the GPU operation. Note that
the actual GPU consumed power depends on its duty cycle.

We consider |H | = |A| = |Γ | = |M| = 11; hence there is a
large number of |X| = 114 ≃ 14.6 · 103 control policies, which, in
combination with the effect of the possible contexts, highlights the
need for a data-efficient learning mechanism. Given the complexity
of running experiments with multiple users, we rely on a single
user in most of our experiments (which render trivial low-layer
controllers). However, whenever needed (we test out multiple het-
erogeneous users in §6.4), we adopt simple controllers (e.g. MAC
layer scheduling) that are detailed where relevant. In line with
previous works [8, 20], we select 𝛽1/2 = 2.5, which shows good
performance in our evaluations. Finally, unless otherwise stated,
we will plot our results with lines and shadowed areas representing,
respectively, the median value and the 10th and 90th percentiles,
across 10 independent repetitions.
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Figure 9: Convergence evaluation. A scenario with steady
channel conditions (no context changes), 𝛿1 = 1 mu/W,
𝜌𝑚𝑖𝑛 = 0.5, and 𝑑𝑚𝑎𝑥0.4 s.

6.2 Convergence
To evaluate the convergence of EdgeBOL, we consider a single con-
text and a certain constraint set with 𝜌𝑚𝑖𝑛 (minimum mAP per-
formance) and 𝑑𝑚𝑎𝑥 (maximum service delay). Dynamic context
changes and different constraints are evaluated later. Namely, we
set the mean SNR to 35 dB (good wireless conditions), 𝛿1 = 1 mu/W,
𝜌𝑚𝑖𝑛 = 0.5, and 𝑑𝑚𝑎𝑥 = 0.4 s. Fig. 9 plots the evolution over time
of the cost (𝑢𝑡 ), mAP performance (𝜌𝑡 ), delay (𝑑𝑡 ), and server and
BS power consumption (𝑝𝑠𝑡 and 𝑝

𝑏
𝑡 ) as a function of 𝛿2.

The first observation is that the cost 𝑢𝑡 (top plot) converges
within roughly 25 time periods across all 𝛿2 = {1, 2, 4, 8, 32}. Higher
𝛿2 values induce higher cost as the price associated to each watt
consumed by the BS grows. Remarkably, both the mAP perfor-
mance and delay fall within the selected system constraints upon
convergence with high probability. In fact, we have observed con-
sistent results (converge speed, satisfaction of system constraints)
irrespectively of the context and system constraints.
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Figure 10: Power consumption and normalized cost for a sin-
gle context as a function of 𝛿2, with 𝛿1 = 1 mu/W. Dashed
lines represent our exhaustive search approach.

The system power consumption presents interesting trade-offs
with 𝛿2. In particular, small 𝛿2 (e.g., 𝛿2 = 1) induce high power
consumption at the BS but low at the server. This is because the
maximum net power consumption of our virtualized BS (around
7.25 W) is much smaller to that of the server (between 85 to 180 W).
Therefore, if the associated cost (mu/W) is similar for both BS and
server, EdgeBOLwill minimize the power consumption of the server
at the expense of a small energy toll for the BS. However, when
𝛿2 is relatively high (e.g., 𝛿2 = 64), the actual cost associated with
the energy footprint of the BS becomes comparable, or even higher,
than that of the server. Hence, EdgeBOL drives the system to con-
figurations that minimize BS power consumption at the expense of
the server energy. This latter case is relevant for situations when
a small cell has a stringent power budget (e.g., solar-powered) or
has cooling restrictions. Indeed, different types of BS have differ-
ent energy footprint, which motivates the need for approaches
that learn the relationship between power consumption patterns,
performance metrics and configuration policies.

6.3 Static scenarios
Let us now take a closer look at the power consumption and the
respective EdgeBOL’s policies for different constraints and values of
𝛿2. Fig. 10 shows the power consumption and normalized cost once
EdgeBOL has converged for𝛿1 = 1 and𝛿2 = {1, 2, 4, 8, 16, 32, 64}mu/W.
We compute the normalized cost independently for each 𝛿2 so we
can compare across different 𝛿2 values. We now test different con-
straint settings: (𝑖) 𝑑𝑚𝑎𝑥 = 0.5 s, 𝜌𝑚𝑖𝑛 = 0.4 (lax constraints),
(𝑖𝑖) 𝑑𝑚𝑎𝑥 = 0.4 s, 𝜌𝑚𝑖𝑛 = 0.5 (medium constraints), and (𝑖𝑖𝑖)
𝑑𝑚𝑎𝑥 = 0.3 s, 𝜌𝑚𝑖𝑛 = 0.6 (stringent constraints), represented in red,
green, and blue in the figure. In addition, we represent with dashed
lines the cost attainable by an offline oracle, which we obtained us-
ing a time-consuming exhaustive search procedure over the whole
control space. Though this approach is unfeasible in practice, it is a
good benchmark to empirically assess the optimality of EdgeBOL.

Ignoring, for now, the differences across different constraints set-
tings (different colors in the plots), we can make two observations.
First, we can confirm our earlier observation that higher values of
𝛿2 (compared to 𝛿1) steer EdgeBOL to shift power consumption from

dmax = 0.5, rmin = 0.4 dmax = 0.4, rmin = 0.5 dmax = 0.3, rmin = 0.6

0.0

0.2

0.4

0.6

0.8

20 21 22 23 24 25 26

d2

M
ea

n 
G

P
U

 s
pe

ed

0.4

0.6

0.8

1.0

20 21 22 23 24 25 26

d2

M
ea

n 
im

ag
e 

re
s.

 

0.4

0.6

0.8

1.0

20 21 22 23 24 25 26

d2

M
ea

n 
A

irt
im

e 
po

lic
y

0.2

0.4

0.6

0.8

1.0

20 21 22 23 24 25 26

d2

M
ea

n 
M

C
S

 p
ol

ic
y

Figure 11: Policies for a single context as a function of 𝛿2,
with 𝛿1 = 1 mu/W.

the server to the BS (and vice versa). Second, EdgeBOL is able to drive
the system to near-optimal points of operation, when comparing
the cost of EdgeBOL with that obtained by our oracle.

In more detail, the figure renders very different behavior across
different constraint settings (colors in the plot). In the case of
𝑑𝑚𝑎𝑥 = 0.5 s, 𝜌𝑚𝑖𝑛 = 0.4 (lax constraints, in red in the plot), there
is a drastic change in the selected policies and resulting power con-
sumption as we increase 𝛿2. Because these settings are rather lax,
EdgeBOL has more leeway to explore (and then select a policy from)
a larger space of feasible policies. This is made evident when we
compare its normalized cost with that of the most stringent settings
(𝑑𝑚𝑎𝑥 = 0.3 s, 𝜌𝑚𝑖𝑛 = 0.6, blue line in the figure): for 𝛿2 = 1, the
minimum cost attained by EdgeBOL is 25% larger for the latter, and
10% for 𝛿2 = 64. Moreover, the normalized cost consistently grows,
though with a shrinking gap in cost across constraint settings, as
we increase 𝛿2. This occurs because, in our testbed, the range of
power values that the BS can consume (across all policies) goes
between 4 and 8 W, which is substantially smaller to that of the
server (between 50 and 200 W). As a result, when we increase 𝛿2,
i.e., when we increase the importance given to reducing BS power,
the cost variance across policies reduces. Needless to say, this may
be different with different types of BS such as macro cells.

Finally, Fig. 11 shows the corresponding control policies for the
same scenarios shown in Fig. 10. Let us first take a look to the
lax settings (𝑑𝑚𝑎𝑥 = 0.5 s, 𝜌𝑚𝑖𝑛 = 0.4, depicted with red lines in
the figure). When 𝛿2 is small, EdgeBOL imposes low-consuming
server-side policies, i.e., low GPU speed policies. This certainly
helps to reduce the server consumption, and the overall cost as
a consequence. However, to meet the performance constraints,
EdgeBOL has to compensate low GPU speed policies with higher
image resolutions and higher radio policies that ease the job of
the service while minimizing delay, which comes at at the expense
of higher BS power consumption. Conversely, when 𝛿2 increases,
EdgeBOL selects low-consuming radio policies and, to compensate,
lower image resolutions and higher GPU speed policies that help
reduce service delay. On the other side, for the scenario with most
stringent constraints (𝑑𝑚𝑎𝑥 = 0.3 s, 𝜌𝑚𝑖𝑛 = 0.6, blue lines), EdgeBOL
is forced to deal with a smaller space of feasible policies. Therefore,
all policies are roughly consistent across different 𝛿2 values (with
mild differences for the highest settings).
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different SNR conditions: user 1 has the best channel condi-
tions (SNR = 30 dB in average) and every additional user has
20% lower SNR. We evaluate different values of 𝛿2. 𝛿1 = 1.

6.4 Heterogeneous users
In an effort to reduce the problem of the dimensionality, we aggre-
gate statistics of individual users (mean SNR, variance SNR, etc.)
when describing the context. See §4.4 for a discussion on this issue.
To validate that this design choice does not compromise optimality,
we have performed a series of experiments with multiple heteroge-
neous users. Without loss of generality, we adopt simple low-level
control mechanism to enforce the selected policies when allocated
resources to individual users: (𝑖) a round-robin radio scheduling
approach at the MAC layer of the BS, (𝑖𝑖) equal image resolution
across users, (𝑖𝑖𝑖) MCS selection approach legacy of srsRAN [26]
(upper bounded by the policy), and (𝑖𝑣) highest GPU speed to handle
individual video frames allowed by the policy.

We train the algorithm with a variable number of heterogeneous
users with changing channel quality. Once trained, we evaluate
the performance of EdgeBOL in scenarios with a fixed number 𝑁 of
heterogeneous users. The first user has the best channel conditions
(SNR = 30 dB in average) and every additional user has 20% lower
SNR.4 We trivially choose 𝑑𝑚𝑎𝑥 = 2 and 𝜌𝑚𝑖𝑛 = 0.6 so the system
has a feasible solution in the worst case (with 6 users). Fig. 12
depicts the cost of the system (as defined in eq. (1)) for scenarios
with different values of 𝑁 . We do this for different weights 𝛿2 in
the trade-off between the service’s power consumption and that of
the vBS (𝛿1 = 1 in all scenarios).

We compare the performance of EdgeBOL with that of an op-
timal oracle that finds the best possible combination of policies
offline after an exhaustive search where all the system dynamics
are known. Hence, though it is unfeasible to use in practice, it
provides a lower bound cost that helps us assess the optimality
gap of EdgeBOL empirically. The results show that the performance
attained by EdgeBOL is remarkably close to that of the oracle, well
within 2%. Though it is not shown in the plot due to space con-
straints, EdgeBOL satisfies the service constraints with probability
0.98. This validates that aggregated statistics across users suffice
to provide good performance yet keeping the problem’s complex-
ity tractable. We can also observe that the overall cost increases
with the number of users. The reason is that, as each additional
4Our experimental setup is constrained to scenarios with 𝑁 < 7.
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Figure 13: Evolution of policies for dynamic contexts (𝛿 = 8).

user has lower SNR, its transmission time is higher. As a conse-
quence, EdgeBOL is forced to invest more resources (i.e., airtime,
GPU speed) in the system to compensate this degradation of mean
wireless conditions.

6.5 Dynamic scenarios
We now test the performance of EdgeBOL in the presence of fast
context dynamics and sudden constraint changes. Let us start with
the former. To this end, we deploy an untrained EdgeBOL in an
environment where the wireless conditions quickly vary between
5 and 38 dB, as depicted by the first plot in Fig. 13, and set 𝛿1 = 1
and 𝛿2 = 8. The top right plot depicts the size of the safe control
set over time. As expected, the safe set quickly reduces within
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Figure 14: Evolution of delay and mAP upon changes on the
constraint settings for EdgeBOL and a DDPG approach imple-
mented with neural networks (𝛿 = 8).

roughly 25 time periods and then adapts to the eventual contextual
changes, with fluctuations matching the context changes. Remark-
ably, EdgeBOL convergences upon only 3 cycles across all contexts
under evaluation. This is possible because the knowledge acquired
by EdgeBOL for one context is actually transferred across similar
contexts. That is, EdgeBOL is able to select judicious policies, shown
in the remaining plots of the figure, even for unseen contexts. Specif-
ically, for this choice of 𝛿 parameters, the GPU speed policy and
the MCS policy highly vary upon context dynamics, whereas the
image resolution and the airtime policy remain consistently high. It
is worth mentioning that this policy dynamics is substantially dif-
ferent for diverse values of 𝛿 (not shown due to space constraints).

The above illustrates one of the major advantages of our ap-
proach, which makes appropriate decisions—even for contexts un-
seen before—by inferring correlations between the cost function
and the context-control space. Conventional neural network-based
approaches are substantially less efficient in doing so, which renders
EdgeBOL a particularly data-efficient solution.

To assess this, we implement a customized version of the deep
deterministic policy gradient (DDPG) [37]. This benchmark is in-
spired by [4], which is the most related work to ours. Since the
DDPG is designed to address the full-RL problem, we need to adapt
it to address a contextual bandit problem, according to our for-
mulation (Sec. 4). The DDPG algorithm uses an actor-critic neural
network architecture, but the critic, instead of approximating the
Q function (full-RL problem), it learns a new cost function referred
to as DDPG cost. The DDPG cost takes the value of (1) when all the
constraints in (2) are satisfied, and the maximum cost value other-
wise. Note that the DDPG does not handle constraints naturally
and by using the DDPG cost function we allow the algorithm to
do it. DDPG is particularly appealing for this type of problem be-
cause it operates with continued-valued control spaces. Conversely,
value-based approaches (such as Deep Q-Networks) are impractical
for large control spaces, such as ours [17]. We mildly modified the
architecture presented in [4] with a sigmoid function for the actor’s
output and optimized all the hyper-parameters (such as the decay)
to minimize convergence time and performance.

We then test EdgeBOL and DDPG in a dynamic scenario where
the constraint settings change over time: (𝑖) 𝑑𝑚𝑎𝑥 = 0.5 s, 𝜌𝑚𝑖𝑛 =

0.4 from 𝑡 = 0 through 𝑡 = 1000; (𝑖𝑖) 𝑑𝑚𝑎𝑥 = 0.4 s, 𝜌𝑚𝑖𝑛 = 0.6
from 𝑡 = 1000 through 𝑡 = 2000; and (𝑖𝑖𝑖) 𝑑𝑚𝑎𝑥 = 0.5 s, 𝜌𝑚𝑖𝑛 = 0.5
from 𝑡 = 2000 on. Fig. 14 depicts the evolution over time of the
service delay and the mAP performance for both approaches. Not
surprisingly, EdgeBOL rapidly converges to policies that respect the
performance constraints, even when they suddenly change. The
non-parametric nature of our approach and the fact that we can
compute safe control sets for any constrained setting based on
prior data, allows EdgeBOL to drive the system to the new optimal
points of operations almost instantaneously. In marked contrast,
the neural network-based benchmark takes a substantially higher
number of time periods to find the new optimal—it is actually
unable to converge prior to the constraint changes—and fails to
adapt graciously upon constraint changes because neural networks
are parametric models that need to re-learn upon such changes.

7 CONCLUSIONS
The energy-aware implementation of AI services at the network
edge is increasingly important for performance, economic and envi-
ronmental reasons [45], [59]. Ourmeasurements showed non-trivial
trade offs between the delay and accuracy of such services, and
revealed how these metrics are shaped by the base station and edge
server control policies. Using a Bayesian learning algorithm we au-
tomated the identification of a policy that minimizes the aggregate
energy costs while adhering to predetermined performance criteria.
Remarkably, this framework comes with minimal assumptions and
is proved particularly effective in exploring the huge system con-
figuration space. The proposed resource control mechanism is fully
compliant with O-RAN and particularly promising for enabling
edge AI services, as we verify experimentally using a prototype.
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