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Abstract—The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complex
relationship between computing and radio dynamics make vRAN resource control particularly daunting. We present vrAIn, a resource
orchestrator for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data
(traffic and channel quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithm
based on an actor-critic neural network structure and a classifier to map contexts into resource control decisions.
We have evaluated vrAIn experimentally, using an open-source LTE stack over different platforms, and via simulations over a
production RAN. Our results show that: (i) vrAIn provides savings in computing capacity of up to 30% over CPU-agnostic methods;
(ii) it improves the probability of meeting QoS targets by 25% over static policies; (iii) upon computing capacity under-provisioning,
vrAIn improves throughput by 25% over state-of-the-art schemes; and (iv) it performs close to an optimal offline oracle. To our
knowledge, this is the first work that thoroughly studies the computational behavior of vRANs and the first approach to a model-free
solution that does not need to assume any particular platform or context.

Index Terms—RAN virtualization; resource management; machine learning
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1 INTRODUCTION
Radio Access Network virtualization (vRAN) is well-
recognized as a key technology to accommodate the ever-
increasing demand for mobile services at an affordable cost
for mobile operators [1]. vRAN centralizes softwarized radio
access point (RAP)1 stacks into computing infrastructure
in a cloud location—typically at the edge, where CPU
resources may be scarce. Fig. 1 illustrates a set of vRAPs
sharing a common pool of CPUs to perform radio pro-
cessing tasks such as signal modulation and encoding (red
arrows). This provides several advantages, such as resource
pooling (via centralization), simpler update roll-ups (via
softwarization) and cheaper management and control (via
commoditization), leading to savings of 10-15% in capital
expenditure per km2 and 22% in CPU usage [2], [3].

It is thus not surprising that vRAN has attracted the
attention of academia and industry. OpenRAN2, O-RAN3 or
Rakuten’s vRAN—led by key operators (such as AT&T, Ver-
izon or China Mobile), manufacturers (such as Intel, Cisco or
NEC) and research leaders (such as Standford University)—
are examples of publicly disseminated initiatives towards
fully programmable, virtualized and open RAN solutions
based on general-purpose processing platforms and decou-
pled base band units (BBUs) and remote radio units (RRUs).
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• A. Garcia-Saavedra is with NEC Labs Europe.
• X. Costa-Pérez is with NEC Labs Europe, i2CAT Foundation and ICREA.
• M. Gramaglia and A. Banchs are with Universidad Carlos III de Madrid.
• J. J. Alcaraz is with Technical University of Cartagena.

1. The literature uses different names to refer to different radio stacks,
such as base station (BS), eNodeB (eNB), gNodeB (gNB), access point
(AP), etc. We will use RAP consistently to generalize the concept.

2. https://telecominfraproject.com/openran/
3. https://www.o-ran.org/
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Fig. 1. vrAIn: A vRAN resource orchestrator

Despite the above, the gains attainable today by vRAN
are far from optimal, and this hinders its deployment at
scale. In particular, computing resources are inefficiently
pooled since most implementations over-dimension com-
putational capacity to cope with peak demands in real-time
workloads [4], [5]. Conversely, substantial cost savings can be
expected by dynamically adapting the allocation of resources to
the temporal variations of the demand across vRAPs [3], [6].
There is nonetheless limited hands-on understanding of
the computational behavior of vRAPs and the relationship
between radio and computing resource dynamics. Such an
understanding is required to design a practical vRAN
resource management system—indeed the goal of this paper.

Towards a cost-efficient resource pooling. Dynamic
resource allocation in vRAN is an inherently hard problem:
(i) The computational behavior of vRAPs depends on

many factors, including the radio channel conditions
or users’ load demand, that may not be controllable.
More specifically, there is a strong dependency with
the context (such as data bit-rate load and signal-to-
noise-ratio (SNR) patterns), the RAP configuration (e.g.,
bandwidth, MIMO setting, etc.) and on the infrastruc-
ture pooling computing resources;
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Fig. 2. A SISO 10-MHz LTE vRAP with maximum uplink traffic load
and high SNR. High CPU and MCS allocations yield low data buffering
(100% throughput). Low MCS allocation causes high user data buffering
(<100% throughput). Low CPU time allocation renders high decoding
error rate (�100% throughput).

(ii) Upon shortage of computing capacity (e.g., with nodes
temporarily overloaded due to orchestration decisions)
CPU control decisions and radio control decisions (such
as scheduling and modulation and coding scheme
(MCS) selection) are coupled; certainly, it is well known
that scheduling users with higher MCS incur in higher
instantaneous computational load [5].

Let us introduce upfront some toy experiments to illus-
trate this. Note that we deliberately omit the details of our
experimental platform (properly introduced in §4) to keep
our motivation simple. We set up an off-the-shelf LTE user
equipment (UE) and a vRAN system comprising srsLTE,
an open-source LTE stack, over an i7-5600U CPU core @
2.60GHz as BBU and a software-defined radio (SDR) USRP
as RRU radio front-end. We let the UE transmit uplink UDP
data at maximum nominal load with high SNR channel
conditions and show in Fig. 2 the ratio of bits successfully
decoded (throughput), where 100% denotes that all the
demand is served, when selecting different MCS indexes (y-
axis) and relative CPU timeshares (x-axis). The results yield
an intuitive observation: higher modulation levels achieve
higher performance, which in turn require larger allocations
of computing resources. The reason is that vRAPs have tight
deadlines to decode data, which are violated when there
is not enough computing capacity available, producing de-
coding errors like low SNR does. This reduces throughput
and, as a result, increases delay. This dependency motivates
us to (i) devise novel algorithms to adjust the allocation
of computing resources to the needs of a vRAN; and (ii)
upon shortage of computing resources, explore strategies
that make compute/radio control decisions jointly.

Model-free learning. The aforementioned issues have
been identified in some related research [5], [7], [8] (a proper
literature review is presented in §8). Nevertheless, these
works rely on models that need pre-calibration for specific
scenarios and they do not consider the effect that differ-
ent bit-rate patterns and load regimes have on computing
resource utilization. In reality, however, the relationship that
system performance has with compute and radio policies is far
from trivial and highly depends on the context (data arrival
patterns, SNR patterns) and on the software implementation and
hardware platform hosting the pool of BBUs.

To emphasize the above point, we repeat the previous
experiment for different SNR regimes (high, medium and
low) and different mean bit-rate load regimes (10%, 30%,
50% and 70% of the maximum nominal capacity) for two
different compute cores, the i7-5600U CPU core @ 2.60GHz
used before and an i7-8650U CPU core @ 1.90GHz, and
show in Fig. 3 (maximum load, variable SNR) and Fig. 4
(high SNR, variable load) the relative throughput with respect
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Fig. 3. vRAP with maximum uplink traffic load. Different computing
platforms and SNR conditions yield different performance models.
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Fig. 4. vRAP with high SNR. Behavior is complex and non-linear.
Light/dark areas (good/bad performance) follow irregular patterns.

to the load demand. The results make it evident that the
system behavior shown in Fig. 2 substantially varies with
the context (SNR, load) and the platform pooling computing
resources, More importantly, the underlying model captur-
ing this behavior is highly non-linear and far from trivial.

All the above render tractable models in the literature
(e.g., [5], [7], [8]) inefficient for practical resource control.
Indeed, mechanisms based on such models are not able to
accurately capture the complex behavior evidenced by our
early experiments and hence perform poorly. We demon-
strate this empirically in §6. In contrast, we resort to model-free
reinforcement learning methods that adapt to the actual contexts
and platforms. We present vrAIn, an artificial intelligence-
powered (AI) vRAN controller that governs the allocation
of computing and radio resources (blue arrows in Fig. 1).

The main novel contributions of this paper are as follows:
• We design a deep autoencoder that captures context infor-

mation about vRAP load, signal quality and UE diversity
time dynamics in a low-dimensional representation;

• We cast our control problem as a contextual bandit problem
and solve it with a novel approach: (i) we decouple radio
and computing control decisions to efficiently manage the
high-dimensional action space; and (ii) we design a deep
deterministic policy gradient (DDPG) algorithm for our
contextual bandit setting to handle the real-valued nature
of the control actions in our system;

• We implement a proof-of-concept of vrAIn using SDR
boards and commodity computing nodes hosting
software-based LTE eNB stacks, and assess its perfor-
mance with a variety of scenarios and benchmarks.

To the best of our knowledge, our work is the first in the
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literature that thoroughly explores empirically the compu-
tational behavior of a vRAN by means of an experimental
setup. This paper extends our preliminary conference ver-
sion [9] with the following contributions:
• We propose and evaluate an offline training method,

suitable for real-life practical deployments;
• We simulate larger-scale scenarios to assess perfor-

mance and cost savings in a real RAN deployment.
Our results do not only shed light on the computational

behavior of this technology across different contexts (radio and
data traffic patterns), but also show that substantial gains can
be achieved by developing autonomous learning algorithms that
adapt to the actual platform and radio channel.

2 BACKGROUND
Prior to presenting the design of vrAIn (see §3), we intro-
duce relevant information and notation used in the paper.

2.1 Radio Access Point
A Radio Access Point (RAP) implements the necessary
processing stack to transfer data to/from UEs. These stacks
may be heterogeneous, e.g., Fig. 1 shows 4G LTE, 5G NR,
unlicensed LTE, and RAPs sharing a radio front-end (via
network slicing [10], [11], [12]), and/or implement different
functional splits [13], [14], [15], but they all share common
fundamentals, such as OFDMA modulations and channel
deecoders at the physical layer (PHY) that make vrAIn gen-
eral across these vRAPs. Despite this heterogeneity, RAPs
are typically dissected into 3 layers (L1, L2, L3).

L1 (PHY). We focus on sub-6GHz; specifically, on the
uplink of 4G LTE and 5G NR since it is the more complex
case as we have to rely on periodic feedback from users
(while our implementation focuses on the uplink, our de-
sign applies to both uplink and downlink; the extension to
downlink is straightforward as user buffers are local). L1 is
implemented through a set of OFDMA-modulated channels,
using a Resource Block (RB) filling across ten 1-ms sub-
frames forming a frame. The channels used for data heavy-
lifting are the Physical Uplink Shared Channel (PUSCH) and
the Physical Downlink Shared Channel (PDSCH); usually
modulated with QAM constellations of different orders (up
to 256 in 5G) and MIMO settings, and encoded with a
turbo decoder (4G) or LDCP code (5G). There are some
differences between 4G and 5G PHYs, such as 5G’s scalable
numerology, but these are not relevant to vrAIn, which
simply learns their computational behavior in a model-free
manner. In brief, RBs assigned to UEs by the MAC layer
are modulated and encoded with an MCS that depends on
the user’s Channel Quality Indicator (CQI), a measure of
SNR that is locally available in the uplink and is reported
periodically by UEs in the downlink. The scheme reported
in [16] to map CQI values into MCSs is the most common
approach and is blind to CPU availability.

L2 (MAC, RLC, PDCP). The MAC sublayer is responsi-
ble for (de)multiplexing data from/to different radio bearers
to/from PHY transport blocks (TBs) and perform error
correction through hybrid ARQ (HARQ). In the uplink, de-
multiplexing is carried out by the MAC scheduler by as-
signing RBs to UEs at every transmission time interval (TTI,
usually equal to 1ms). Once this is decided, the RAP feeds
the scheduling information to the UEs through a scheduling

grant. 3GPP leaves the scheduler design open for vendor
implementation. Moreover, the MAC layer also provides
a common reference point towards different PHY carriers
when using carrier aggregation. The higher sublayers (RLC,
PDCP) carry out tasks such as data reordering, segmenta-
tion, error correction and cyphering; and provide a common
reference point towards different PHY/MAC instances (e.g.,
from different vRAPs). Another L2 aspect relevant for the
design of vrAIn are the Buffer State Reports (BSRs), which
provide feedback to the RAPs about the amount of data each
UE has pending to transmit. This information will be used
by vrAIn to design a system state signal used for feedback
on resource allocation decisions.

L3 (RRC, GTP). The Radio Resource Control (RRC) and
GTP-U sublayers manage access information, QoS reporting
and tunneling data between RAPs and the mobile core.

Notably, PHY (de)modulation/(de)coding operations
consume most of the CPU cycles of the stack [17], which
explains the dependency between CPU and MCS shown in
§1. PDCP’s (de)ciphering tasks consume most of the CPU
cycles in L2 [18], albeit L2 is substantially less demanding
than L1 [17]; furthermore, PDCP will be decoupled from the
distributed unit (DU) in 5G (see NR gNB in Fig. 1).

2.2 Notation
We let R and Z denote the set of real and integer numbers,
and R+ and Rn represent the sets of non-negative real num-
bers and n-dimensional real vectors, respectively. Vectors
are in column form and written in bold font. Subscripts
represent an element in a vector and superscripts elements
in a sequence. For instance, 〈x(t)〉 is a sequence of vectors
with x(t) = (x

(t)
1 , . . . , x

(t)
n )T being a vector from Rn and x(t)

i

being the i’th component of the t’th vector in the sequence.

3 SYSTEM DESIGN

Fig. 5 illustrates a model of our system, where we can ob-
serve two functional blocks operating at different timescales:
• In the first block, CPU schedulers (which assign tasks

to CPUs, e.g., subframes for decoding) and radio sched-
ulers (which assign radio resources, e.g., selecting MCSs)
operate at sub-millisecond timescales. vrAIn relies on
simple computing and radio scheduling policies, which
we introduce in §3.1, to influence their behavior.

• The second block is vrAIn, our vRAN resource orchestra-
tor, a sequential decision-making entity that configures
the above schedulers using, respectively, compute and
radio scheduling policies over larger timescales. Our de-
sign is compliant with the architecture of O-RAN, which
envisions a Non-Real-Time RAN Intelligent Controller
operating at second-level granularity [19]. In practice, the
operational timescale may be limited by the system con-
straints, such as the periodicity of feedback information
from the users.

To overcome the issues mentioned in §1, our resource
orchestrator consists of a feedback control loop where:

(i) Contextual information (SNR and data load patterns) is
collected and encoded;

(ii) An orchestrator that maps contexts into computing and
radio scheduling policies; and

(iii) A reward signal assesses the decisions taken and fine-
tunes the orchestrator accordingly.
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Fig. 5. System architecture.

This falls naturally into the realm of reinforcement learning
(RL) [20], an area of machine learning applied in human-
level control (mastering games such as Go [21] or StarCraft
II [22]), health-care [23] or finances [24]. Full-blown RL prob-
lems are usually modeled with Markov decision processes
and use some model-free learning method (e.g., Q-learning)
to estimate an action-value function [25]. However, the im-
pact that instantaneous actions (computing and radio scheduling
policies) have on future contexts (radio signal quality patterns
and user data demand), which RL usually captures with the
recursive Bellman equation, is very limited in our case because of
the different timescales between the schedulers and the resource
orchestrator. Thus, we can resort to a contextual bandit
(CB) model, a type of RL applied in advertisement [26]
or robot [27] control systems that can learn context-action
mapping in a much simpler setup (without recursive action-
value functions). There are several challenges to adopt a
CB model, such as continuous and high-dimensional spaces,
which we address in §3.2.

3.1 CPU and radio scheduling policies
CPU scheduling implies assigning tasks such as subframes
to decode to an available CPU. In turn, radio scheduling
involves deciding upon the number of RBs assigned to UEs,
their location in frequency and time, their MCS and their
transmission power. A plethora of computing and radio
scheduling mechanisms [28], [29] have been proposed.

When orchestrating CPU and radio resources, our goal
is both to provide good performance—minimizing data deliv-
ery delay—and make an efficient resource usage—minimizing
CPU usage while avoiding decoding errors due to a deficit
of computing capacity. To achieve these goals, when there is
sufficient computing capacity, we can decode all frames with
the maximum MCS allowed by the SNR conditions while
provisioning sufficient CPU resources to this end. However,
whenever there is a deficit of computing capacity, we need
to constraint the set of selected MCSs, as otherwise we would
incur into decoding errors that would harm the resulting
efficiency. In this case, our approach is to limit the maximum
eligible MCSs within each RAP when required, which has
several advantages: (i) it is simple, as we only need to
determine a single MCS bound for each RAP; and (ii) it
provides fairness across UEs, reducing the performance of
the UEs that are better off and preserving the less favorable
ones. Thus, to orchestrate CPU and radio resources at vRAP
i, vrAIn relies on the following scheduling policies:

- A maximum fraction of time ci ∈ C := [0, 1] ⊂ R allotted
to a CPU (our computing control decisions); and

- A maximum eligible MCS mi ∈M, whereM is a discrete
set of MCSs (our radio control decisions).

These control settings are configured by the resource orches-
trator and can be easily implemented in any scheduler. Note
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Buffer States

Radio samples

Different
UEs

Context 
samples

Fig. 6. Context samples, monitoring slots, and radio samples.

that these are upper bounds, the CPU/radio schedulers still
have the freedom to optimize the use of resources within
these bounds. Our job is therefore to design a resource or-
chestrator that learns the behavior of any radio/CPU sched-
uler and maximizes performance using such interfaces.

3.2 vrAIn: vRAN resource orchestration
We hence formulate our resource control problem as a con-
textual bandit (CB) problem, a sequential decision-making
problem where, at every time stage n ∈ N, an agent observes
a context or feature vector drawn from an arbitrary feature
space x(n) ∈ X , chooses an action a(n) ∈ A and receives a
reward signal r(x(n),a(n)) as feedback. The context x need
not be stationary, as network conditions may change over
time, and the sequence of context arrivals 〈x(n)〉n∈N and the
distributionE over context-reward pairs (x, r) are fixed and
unknown a priori. Furthermore, we let π(x) : X → A denote
a deterministic orchestration function that maps contexts
into actions i.e., scheduling policies, and

Rπ := E(x,r)∼E

[
r (x, π(x))

]
(1)

denote the expected reward of a function π. The goal
is to learn an optimal orchestration function π∗ :=
arg maxπ∈ΠRπ that maximizes instantaneous reward sub-
ject to

∑
i∈P ci ≤ 1 to respect the system capacity, Π being

the space of functions.
Context space. As shown by our early experiments in

§1, SNR and traffic load are the contextual features that
have most impact on the performance of a vRAP. We divide
the time between two stages into t := {1, . . . , T} monitoring
slots. At the end of each slot t, we aggregate radio samples
collected during the last slot, as shown in Fig. 6.1, across
all users in each vRAP i ∈ P . Radio samples consist of:
(i) the total amount of new bits pending to be transmitted
δ

(t)
i,n; (ii) mean SNR σ̄

(t)
i,n; and (iii) variance SNR σ̃

(t)
i,n. This

provides information about the time dynamics of the various
variables of interest, namely (i) aggregate traffic load, (ii)
the quality of the signals each vRAP has to process and
(iii) the variability of the signal quality, which captures the
impact of having multiple (heterogeneous) UEs in the vRAP
in addition to their mobility. vRAPs can locally observe
SNR data at high rate but the sampling rate of buffer state
data is constrained to the periodicity of feedback from the
users, which is also quantized. Conversely, for downlink
traffic, vRAPs can locally observe buffer states, but only
periodic and quantized data about channel quality. As a
result, the interval between monitoring slots (1/T ) depend
upon such constraints. At the beginning of each stage n,
we gather all samples into sequences of mean-variance SNR
pairs and a sequence of load samples, and construct a context
sample x(n)

i :=
{
〈σ̄(t)
i,n〉, 〈σ̃

(t)
i,n〉, 〈δ

(t)
i,n〉
}
t={1,...,T}

for vRAP i.

Consequently, a context vector appends all context samples
for all vRAPs, i.e., x(n)=(xi)∀i∈P∈X ⊂R3TP, where P = |P|.
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Action space. Our action space comprises all pairs
of CPU and radio scheduling policies introduced in §3.1.
Hence, c(n)

i ∈C and m(n)
i ∈M denote, respectively, the max-

imum computing time share (CPU scheduling policy) and the
maximum MCS (radio scheduling policy) allowed to vRAP
i in stage n. We also let c(n)

0 denote the amount of CPU re-
source left unallocated (to save costs). Thus, a resource allo-
cation action on vRAP i consists of a pair ai :={ci,mi} and
a system action a=(ai)∀i∈P ∈A :={(ci∈C,mi∈M)}∀i∈P .

Reward function. The objective in the design of vrAIn
is twofold: (i) when the CPU capacity is sufficient, the goal is to
minimize the operation cost (in terms of CPU usage) as long
as vRAPs meet the desired performance; (ii) when there is a
deficit of computing capacity to meet such performance target,
the aim is to avoid decoding errors that lead to resource
wastage, thereby maximizing throughput and minimizing
delay. To meet this objective, we design the reward function
as follows. Let qi,xi,ai be the (random) variable capturing
the aggregate buffer occupancy across all users of vRAP
i given context xi and action ai at any given slot. As
a quality-of-service (QoS) criterion, we set a target buffer
size Qi for each vRAP. Note that this criterion is closely
related to the latency experienced by end-users (low buffer
occupancy yields small latency) and throughput (a high
throughput keeps buffer occupancy low). Thus, by setting
Qi, an operator can choose the desired QoS, which can be
used to, e.g., provide differentiation across network slices.
We let Ji(xi, ai) := P [qi,xi,ai < Qi] be the probability that
qi,xi,ai is below the target per vRAP i and define reward as:

r(x,a) :=
∑
i∈P

Ji (xi, ai)−Mεi − λci (2)

where εi is the decoding error probability of vRAP i (which
can be measured locally), and M and λ are parameters that
determine the weight of decoding errors and the trade-off
between resource usage and performance, respectively. We
set M to a large value to avoid decoding errors due to low
allocations and λ to a small value to meet QoS requirements
(while minimizing the use of compute resources).

Design challenges. vrAIn, our resource orchestrator il-
lustrated in Figs. 5 and 7, is specifically designed to solve the
above CB problem tackling the following two challenges:

(i) The first challenge is to manage the high number of di-
mensions of our contextual snapshots. We address this
by implementing an encoder e that projects each context
vector x into a latent representation y = e(x) retaining
as much information as possible into a lower-dimensional
space. The design of our encoder is introduced in §3.2.1.

(ii) The second challenge is the continuous action space. Recall
that an action a ∈ A comprises a (real-valued) compute
scheduling policy c ∈ CP and a (discrete) radio schedul-
ing policy m ∈ MP . We design an orchestrator that
decouples orchestration function π(x) : X → A into two
sequential orchestration functions:
– Radio orchestration function ν(y, c) = m, described in
§3.2.3, which we design as a deep classifier that maps
an (encoded) context e(x) into a radio scheduling policy
m that guarantees near-zero decoding error probability
given compute allocation c; and

– CPU orchestration function µ(y) = c, described in

Encoder

CPU Orch. (µ)

Actor Critic

Radio Orch. (ν)

E
nviro

nm
e n

t

Controller

Fig. 7. Resource Orchestrator

§3.2.2, more challenging due to the continuous nature
of C, which we address with a deep deterministic policy
gradient (DDPG) algorithm [30] that considers function
ν as part of the environment to maximize reward.

While the above design decouples radio and compute
orchestration functions, this does not affect the optimality
of the solution. Indeed, as our radio orchestration function
consists of a deterministic classifier that selects the most
appropriate maximum MCS for the allocation chosen by
the CPU orchestration function, when optimizing the CPU
policy (allocation of compute resources), we also optimize
implicitly the radio policy (maximum MCS).

In the following, we detail the design of vrAIn’s encoder
(§3.2.1), radio orchestration function ν (§3.2.3) and CPU
orchestration function µ (§3.2.2).

3.2.1 Encoder
Such a high-dimensional context space compounds our
CB problem. Hence, we encode each context x(n) ∈ X
into a lower-dimensional representation y(n) ∈ RD with
D � dim(X ) with an encoder e(x(n)) (see Fig. 7).

Our context data consists of complex signals (in time
and space) as they concern human behavior (communi-
cation and/or mobility patterns) and so, identifying low-
dimensional handcrafted features is inherently hard. More-
over, useful representation functions may differ across sce-
narios. For instance, the average may be a good encoder of
SNR sequences in low-mobility scenarios, a linear regression
model such as Principal Component Analysis (PCA) [31]
may be useful in high-mobility scenarios, and the vari-
ance may be needed in crowded areas. Therefore, there is
no guarantee that hand-picked context representations are
useful in general. Conversely, we resort to unsupervised
representation learning. In particular, we focus on the Sparse
Autoencoder (SAE), which is, to the best of our knowledge,
the simplest known unsupervised learning approach that do
not take the aforementioned assumptions, and is commonly
used for such cases [32, Ch.14]. A SAE consists of two feed-
forward neural networks: an encoder eξ (with an output
layer of size D) and a decoder dψ (with an output layer of
size dim(X )) characterized by weights ξ and ψ, respectively.
They are trained together so that the reconstructed output
of the decoder is as similar as possible to the input of the
encoder x, i.e., d(y) = d(e(x)) ≈ x.

A linear autoencoder, with linear activation functions in
the hidden layers, will learn the principal variance direc-
tions (eigenvectors) of our contextual data (like PCA does).
However, our goal is to discover more complex, multi-
modal structures than the one obtained with PCA, and
so we use rectified linear units (ReLUs), and (ii) impose
a sparsity constraint in the bottleneck layer (limiting the
number of hidden units that can be activated) by adding a
L1 regularization term to the loss function. Hence, we solve
the following optimization problem during training:
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Fig. 8. Encoder design.

arg min
ξ,ψ

T∑
i=1

‖xi − d(xi)‖2

2T
+ ω ‖{ξ, ψ}‖ (3)

where ω is a parameter of the L1 regularizer. This approach
lets our encoder learn a code dictionary that minimizes
reconstruction error with minimal number of code words.

Recall that x(n) =
(
〈σ̄(t)
i,n〉, 〈σ̃

(t)
i,n〉, 〈δ

(t)
i,n〉
)
t={1,...,T},∀i∈P

consists of 3 different sequences. To avoid losing the tempo-
ral correlations within the sequences, we encode each of the
three sequences independently, proceeding as follows:

(i) First, we train three different SAEs, one for each sequence
comprising the triple

{
〈σ̄(t)
i,n〉, 〈σ̃

(t)
i,n〉, 〈δ

(t)
i,n〉
}

;
(ii) Second, we encode sequences corresponding

to each individual vRAP i independently, i.e.,
yi = {eξk(xi)}k={σ̄,σ̂,δ};

(iii) Finally, we append all encoded sequences into a single
vector y = (yi)∀i∈P .

This approach, depicted in Fig. 8, avoids that the SAEs
attempt to find correlations across vRAPs or sequences of
different nature (SNR vs traffic load sequences) when opti-
mizing the autoencoder parameters. As a result, vrAIn re-
ceives an encoded representation of the context y(n) ∈ e(X )
as input. To accommodate this in our formulation, we let
π̂ : R(Dσ̄+Dσ̃+Dδ)P → A be the corresponding function
mapping y(n) = e(x(n)) into an action in A, with Dσ̄ , Dσ̃

and Dδ being the output layer of each of our encoders, and
redefine Π̂={π̂ :X →A, π(x)= π̂(e(x))}.

3.2.2 Controller: CPU orchestrator (µ)

In the following, we design a function µ that determines the
allocation of computing resources in order to maximize the
reward function R defined in eq. (2). Note that R depends
on both compute control decisions c, and radio control
decisions m (determined by function ν). We remark that,
given c, we can derive a deterministic orchestrator ν, which
is presented later. As a result, when deriving the optimal
CPU orchestration function we can simply treat ν as part of
the environment. We hence redefine our reward function as:

Rµ := E(y,r)∼E

[
r (y, µ(y))

]
, with (4)

…
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Fig. 9. CPU orchestration policy µ design.

r(y, c) =
∑
i∈P

Ji(yi, ci)−Mεi − λci (5)

and Ji(yi, ci) := P [qi,yi,ai<Qi]. Our goal is to learn an
optimal function µ∗ := arg maxµRµ subject to

∑P
i=0 ci = 1

(note that c0 denotes unallocated CPU time).
Since the above expectation depends only on the envi-

ronment and a deterministic MCS selection function, we
can learn Rµ off-policy, using transitions generated by a
different stochastic exploration method. Q learning [25] is an
example of a popular off-policy method. Indeed, the combi-
nation of Q learning and deep learning (namely DQNs [33]),
which use deep neural network function approximators to
learn an action-value function (usually represented by the
recursive Bellman equation), has shown impressive results
in decision-making problems with high-dimensional con-
textual spaces like is our case. However, DQNs are restricted
to discrete and low-dimensional action spaces. Their ex-
tension to continuous domains like ours is not trivial, and
obvious methods such as quantization of the action space
result inefficient and suffer from the curse of dimensionality.

Instead, we resort to a deep deterministic policy gradient
(DDPG) algorithm [30] using a model-free actor-critic ap-
proach, which is a reinforcement learning method success-
fully adopted in continuous control environments such as
robotics [34] or autonomous navigation [35]. Our approach
is illustrated in Fig. 9. We use a neural network µθ (the
actor) parametrized with weights θ to approximate our de-
terministic compute orchestration function µθ(y) = c, and
another neural network Rφ(y, c) (the critic) parametrized
with weights φ to approximate the action-value function R,
which assesses the current function µθ and stabilizes the
learning process. As depicted in the figure, the output of µθ
(the actor) is a soft-max layer to ensure that

∑P
i=0 ci = 1.

Although they both run in parallel, they are optimized
separately. The critic network needs to approximate the
action-value function Rφ(y, c) ≈ r (y, µ(y)) and to this end
we use standard approaches such as the following update:

∆φ = β (r (y, µ(y))−Rφ(y, c))∇φRφ(y, c) (6)

with learning rate β > 0. Regarding the actor, it is sufficient
to implement an stochastic gradient ascent algorithm:

∇θRµ ≈ E [∇θµθ(y)∇cRφ(y, c)] (7)

Silver et al. [36] proved that this is the policy gradient. In this
way, the actor updates its weights θ as follows:

∆θ = α∇θµθ(y)∇cRφ(y, c) (8)

with learning rate α > 0.
In this way, we decouple scheduling policies and we

can rely on the following radio orchestration function to
maximize the reward defined in §3.2.
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3.2.3 Controller: Radio orchestrator (ν)

In case the CPU capacity is insufficient to decode all the
frames at the highest MCS allowed by the wireless condi-
tions, we may need to impose radio constraints on some
vRAP. To this end, our radio scheduling policy consists of
imposing an upper bound m to the set of MCSs eligible by
the radio schedulers such that the CPU load does not exceed
capacity. Note that our radio scheduling policy will provide
the highest possible m when there are no CPU constraints.

Following the above, we design a function ν that receives
an encoded context y and a compute allocation c as input,
and outputs a suitable radio scheduling decision m. Our
design consists of a simple neural network νΘi per vRAP i
characterized by weights Θi with an input layer receiving
(yi, ci,mi), a single-neuron output layer activated by a
sigmoid function and hidden layers activated by a ReLu
function. We define γ as the threshold corresponding to the
maximum acceptable decoding rate, which we set to a small
value. Then, we proceed as follows to find the largest MCS
satisfying this threshold. We train each νΘi as a classifier that
indicates whether an upper bound MCS equal tomi satisfies
εi ≤ γ (in such a case mi is an eligible bound for vRAP i as
it ensures low decoding error rate given compute allocation
ci and context yi) or εi > γ (it is not). We use a standard loss
function Lν to train the classifiers with measurements of εi
obtained at each stage n. In order to implement our function
νΘ = {νΘi}i∈P , we iterate, for each vRAP i, over the set of
MCSs in descending order and break in the first mi flagged
by the classifier as appropriate (εi ≤ γ), as shown in Fig. 10.

3.3 vrAIn system

vrAIn’s online operation is summarized in Algorithm 1.
All neural networks are initialized (steps (1)-(6)) with ran-
dom weights or pre-trained offline as shown in §3.4.

At the beginning of each stage n, vrAIn:

(i) Measures the empirical reward and decoding error
rate of the previous stage, respectively, as r̃(n−1) :=∑
i∈P J̃

(n−1)
i −Mε̃

(n−1)
i −λc(n−1)

i and ε̃(n−1)
i (step (8));

(ii) Stores {x(n−1),y(n−1),a(n−1), r̃(n−1), ε(n−1)} (step (9));
(iii) Observes the current context x(n) (step (10)).

Context x(n) is first encoded into y(n) in step (13). Then,
we use the actor network µθ to obtain c(n) in step (16)
and function ν to obtain m(n) in step (19). At last, vrAIn
constructs action a(n) for the current stage n in step (20).

The encoders ({eξk , dψk}k={σ̄,σ̂,δ}) and the radio clas-
sifiers ({νΘi}∀i∈P ) are trained every N1 and N3 stages
with the last B1 and B3 samples, respectively (steps (12)
and (18)). Conversely, function µ’s actor-critic networks (µθ ,
Rφ) are trained every n with the last B2 samples (steps
(14)-(15)). Last, we implement a standard online exploration

Algorithm 1: vrAIn algorithm
1 Initialize autoencoders {eξk , dψk}k={σ̄,σ̂,δ}
2 Set batch size B1 and training period N1

3 Initialize actor-critic networks µθ , Rφ
4 Set batch size B2 and exploration rate ε
5 Initialize classifiers νΘ = {νΘi}∀i∈P
6 Set batch size B3 and training period N3

7 for n = 〈1, 2, . . . 〉 do #Main Loop
8 Measure reward r̃(n−1) and {ε̃(n−1)

i }i∈P
9 Store

{
x(n−1),y(n−1),a(n−1), r̃(n−1), ε(n−1)

}
10 Observe context x(n)

11 if mod(n,N1) == 0 then
12 Update SAES {eξk , dψk}k={σ̄,σ̂,δ}

using eq. (3) with B1 samples
13 y(n) ← e(x(n))
14 Update critic Rφ using eq. (6)

with B2 samples
15 Update actor µθ using eq. (8)

with B2 samples
16 c(n) ← µθ(y

(n)) + Bern(ε(n)) · η(n)

17 if mod(n,N3) == 0 then
18 Update classifiers {νΘi} using

Lν({ε̃i}) with B3 samples
19 m(n) ← νΘ(y(n), c(n))

20 a(n) ← (c(n),m(n)) #enforce action

Encoder

CPU orch.

Radio orch.

Encoder

CPU orch.

Radio orch.

method that adds random noise η(n) to the actor’s output
with probability ε(n), Bern(ε) being a Bernoulli-distributed
variable with parameter ε. This online training method can
be deactivated when vrAIn is in production.

3.4 Offline pre-training

Reinforcement learning has traditionally been mistrusted
for its application in production mobile network systems.
Understandably, mobile operators cannot afford to have
in production a system exploring low-performance control
actions just for the sake of learning.

To address this issue, we propose an offline pre-training
method comprised of (i) a digital twin of each individual
vRAP, i.e., a digital replica such as a simulator or a model
approximating the key performance indicators of the vRAN
system; (ii) a replay buffer collecting prior experiences with
the real system, and (iii) a method that uses a batch of
samples obtained from our digital twin and/or our replay
buffer, in each training episode.

This approach highly expedites the training process be-
cause (i) we can explore any (approximations of) context-
action-reward tuple in a timely fashion using digital twins,
(ii) we parallelize exploration by using batches, and (iii) we
enable learning from real experience without using the time
for gaining such experience by using a replay buffer. After
using this offline pre-training method, vrAIn can be used
in production without the need to explore online.

Replay buffer. We take advantage that our DDPG-based
approach is off-policy, which allows us to store observations
gained from past experiences with the real system in a
replay buffer D and learn from them offline. However, it
is inherently hard to provide a sufficiently rich dataset of
experiences because of the large space of context and actions
in our system, which becomes even more challenging to
obtain as the number of vRAPs grows. We hence use a
digital twin (details next) in combination with observations
from our replay buffer to compensate for the gaps in D.
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Digital Twin. A digital twin is essentially a digital
replica of a system that can be used in a controlled and safe
environment for testing or, like in this case, for learning.
This allows vrAIn to explore any context-action-reward
tuple in a safe environment and without the need to gain
the real experience, which takes time. This implies deriving
a model (or building a simulator) that approximates the
system reward as a function of any context-action vector
pair. A digital twin can be built using different strategies.
For instance, one can use a combination of models such
as that in [7], queuing models and others to capture the
relationship between contexts, computing policies, radio
policies, decoding error rates and buffers occupancies (in-
formation needed to compute the system reward). However,
this function is very complex due to the coupling of multiple
vRAPs sharing a common computing pool; and becomes
even more complex as the number of vRAPs increases.

Instead, we follow a simpler approach that stems from
the observation that our reward function (defined in eq. (2))
is, in fact, the aggregate of individual rewards across vRAPs.
This allows us to approximate the behavior of individual
vRAPs as opposed to approximating the behavior of the system
as a whole. To this aim, we use a data-driven modeling
approach based on data collected from the real system.
Specifically, we define τi : (y, c,m) → (J̃i, ε̃i) as the digital
twin of vRAP i, i.e., a function that maps encoded contexts
and computing and radio controls (y, c,m) into an estima-
tion of J̃i and decoding error ε̃i. To do this, we construct two
feed-forward neural networks τi,ω1 → (J̃i) and τi,ω2 → (ε̃i),
with weights ω1 and ω2, respectively, trained with a dataset
collected from the real system such that τi := (τi,ω1 , τi,ω2).
The implementation details can be found in §4.3.

Batch Training. Further, we use batch training across
multiple episodes. The overall logic is shown in Algorithm 2,
where η is random noise (with any arbitrary distribution)
and Uniform(X ) is an instance of a uniform distribution
in space X . To this aim, at each episode k, we sample B
random (y, c, r) tuples comprised of:

- B1 random observations from our replay buffer D
(steps (5)-(6)); and

- B2 random samples obtained with our digital twins τi
(steps (7)-(12));

Specifically, to obtain each random sample from our digital
twins, we first choose a random context vector (step (8)),
add random noise to our target function (step (9)), obtain the
corresponding radio policy4 (step (10)) and finally compute
an approximation of the reward in step (12).

The choice of B4 and B5 depends on the richness of
the replay buffer, e.g., B4 � B5 is suggested for a rich D.
Nevertheless, once we have the collection of B = B4 + B5

samples for episode k, we update the actor and the critic
weights (steps 13-14) of the whole batch at once using
eqs. (6) and (8), accordingly. In this way, this batching
method highly expedites the training process, especially if
we used specialized hardware for training machine learning
models, such as GPUs.

4. We assume the radio orchestrator and the autoencoders are previ-
ously trained offline following a similar approach as the one presented
here to pre-train the computing orchestrator.

Algorithm 2: Actor-Critic Offline Pre-Trainer
1 Set batch size B = B4 +B5

2 Initialize actor-critic networks µθ , Rφ
3 for k = 〈1, 2, . . . 〉 do
4 for b = {1, 2, . . . , B4} do
5 (yb, cb,mb,Jb, εi)← Uniform(D)
6 r̃b =

∑
Jb −Mεb − λcb

7 for b = {1, 2, . . . , B5} do
8 y← Uniform(Y)
9 cb ← µθ(yb) + η

10 mb ← νΘ(yb, cb)

11 (J̃b, ε̃b) = τ (yb, cb,mb)

12 r̃b =
∑

J̃b −Mε̃b − λcb
13 Update critic Rφ using eq. (6) with B samples
14 Update actor µθ using eq. (8) with B samples

Sample B4

context-action
pairs from
replay buffer

Sample B5

context-action
pairs from
digital twins

4 PROTOTYPE IMPLEMENTATION

Our vRAN testbed comprises one SDR USRP5 per RAP
as RRU radio front-end attached via USB3.0 to (i) a 2-
core i7-5600U @ 2.60GHz compute node or (ii) a 4-core
i7-8650U @ 1.90GHz compute node,6 where we deploy
our vRAP instances. Although there may be different ap-
proaches to implement a vRAP stack, it is reasonable to
focus on open-source projects such as OpenBTS7 (3G) and
OpenAirInterface8 or srsLTE [37] (4G LTE) to ensure
reproducibility and deployability.

We build our experimental prototype around srsLTE’s
srseNB. Note, however, that vrAIn takes no assumption
about the underlying system and learns the relationship
between context, scheduling policies and performance au-
tonomously by interacting with the actual system. Hence,
the design of the vrAIn approach is independent of the
underlying platform and could be applied to any mobile
system. Similarly, we deploy a UE per RAP,9 each using
one USRP attached to an independent compute node where
an srsLTE UE stack runs (UEs do not share resources).
Finally, with no loss in generality, we configure the vRAPs
with SISO and 10 MHz bandwidth.10 Let us summarize the
design keys of srsLTE eNB in the sequel. The interested
reader can revise a more detailed description in [37].

Fig. 11 depicts the different modules and threads im-
plementing an LTE stack in srsLTE eNB. Red arrows in-
dicate data paths whereas dark arrows indicate interac-
tions between threads or modules. Every 1-ms subframe
is assigned to an idle PHY DSP worker, which executes a
pipeline that consumes most of the CPU budget of the whole
stack [37], including tasks such as OFDM demodulation,
PDCCH search, PUSCH/PUCCH encoding, PDSCH decod-
ing, uplink signal generation and transmission to the digital
converter. Having multiple DSPs allows processing multiple
subframes in parallel. Since our computing infrastructure
consists of 2 and 4-core processors, we set up a total number
of 3 DSPs, which is sufficient since the HARQ process
imposes a latency deadline of 3 ms (3 pipeline stages). The

5. USRP B210 from National Instruments/Ettus Research.
6. Intel Turbo Boost and hyper-threading are deactivated.
7. http://openbts.org/
8. https://www.openairinterface.org/
9. We use a single UE transmitting aggregated load (from several

users)—note that vrAIn is scheduler-agnostic.
10. Note that the data-driven nature of vrAIn makes it agnostic to

the MIMO or bandwidth configuration of the vRAPs.
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Fig. 11. Threading architecture in srsLTE. Boxes in red are threads.

remaining threads perform important operations that are
less CPU demanding such as scheduling subframes to DSP
workers (PHY RX) or procedures such as random access,
uplink/downlink HARQ and scheduling data to physical
resource blocks (MAC procedures), timer services (MAC
timer), or pushing data from a buffer of uplink TBs to the
upper layers (MAC UL reader).

In this way, a multi-thread process, which can be vir-
tualized with virtual machines (like in [10]) or with Linux
containers (LXCs), handles all the stack. vrAIn relies on
the latter since it provides both resource isolation (through
namespaces) and fine-grained control (through Linux con-
trol groups or cgroups) with minimal overhead. We next
detail our platform’s compute and radio control interfaces.

4.1 CPU scheduling policy

When allocating CPU resources to vRAPs, we follow a typ-
ical NFV-based approach [38] providing CPU reservations,
which ensures isolation across different vRAPs.11 We rely
on Docker12 for BBU isolation and fine-grained control of
computing resources. Docker is an open-source solution
that extends LXCs with a rich API to enforce computing
resource allocations. Docker uses control groups (cgroups),
a Linux kernel feature that limits, accounts for, and isolates
resource usage of Linux processes within the group. Docker
uses CFS (Completely Fair Scheduler) for CPU bandwidth
control of cgroups. CFS provides weight based allocation
of CPU bandwidth, enabling arbitrary slices of the aggre-
gate resource. Hence, we implement a computing resource
control action ci ∈ C as a CFS CPU quota, which effectively
upper bounds the relative CPU time allowed to each vRAP
i. In detail, CFS allows the cgroup associated with the
vRAP container to cpu.cfs_quota_us units of CPU time
within the period of cpu.cfs_period_us (equal to 100 ms
by default) by implementing a hybrid global CPU pool
approach. More details can be found in [28].

In order for vrAIn to exploit Docker’s CFS resource
controller, we need to set the default scheduling policy of
the DSP threads in srsLTE eNB, real-time by default, to
SCHED_NORMAL, which is the default scheduling policy in a
Linux kernel. This can be easily done with a minor modifi-
cation to the PHY header files of srsLTE eNB. Moreover,

11. It is widely accepted in NFV that Virtual Network Functions
(VNFs) need to have the required CPU resources reserved to ensure
the proper operation of the network as well as to isolate VNFs that may
belong to different actors (such as, e.g., different tenants in a network
slicing context [12], [11]).

12. https://www.docker.com/

it is worth remarking that, although our platform uses, for
simplicity, Docker containers over a single compute node
for resource pooling, vrAIn can be integrated into a multi-
node cloud using, e.g, Kubernetes or Docker Swarm. In such
cases, a compute control action ci ∈ C requires Kubernetes
or Docker Swarm to schedule vRAPs into compute nodes
first, and then assign an appropriate CPU timeshare.

4.2 Radio scheduling policy

Unless otherwise stated, we focus on srsLTE’s uplink
communication. Specifically, srsLTE allocates scheduling
grants to UEs in a round-robin fashion and then computes
their TB size (TBS) and MCS as follows. First, srsLTE maps
the SNR into CQI using [16, Table 3]. Then, it maps the UE’s
CQI into spectral efficiency using 3GPP specification tables
(TS 36.213, Table 7.2.3-1). Finally, it implements a simple
loop across MCS indexes to find the MCS-TBS pair that
better approximates such spectral efficiency. To this aim,
srsLTE relies on an additional 3GPP specification table (TS
36.213, Table 7.1.7.1-1) to map an MCS index into a TBS.

A plethora of scheduling policies has been proposed
(proportional fair, max-weight, etc. [29]). However, as ex-
plained in §3.1, vrAIn can learn the behavior of any low-
level scheduler. We hence integrate our radio scheduling
policy, we only need to write a handful of lines of code
in srsLTE’s MAC procedures (see Fig. 11) to (i) upper
bound the eligible set of MCSs with mi ∈M—which we do
by modifying the aforementioned MCS-TBS loop, and (ii)
expose an interface to the orchestrator to modify mi ∈ M
online—which we do through a Linux socket.

4.3 Resource Orchestrator

We implemented vrAIn with the parameters shown in
Table 1 using Python and Keras. In our implementation,
the time between two stages takes 20 seconds and each
context sample consists in T = 200 samples. We have tested
other orchestration timescales13 with marginal differences in
performance. For this reason and due to space constraints,
we focus our evaluation in other aspects of vrAIn.

CPU orchestrator. The CPU orchestrator µ consists of
two neural networks (actor and critic), each with 5 hidden
layers with {20, 40, 80, 40, 10} neurons activated by a ReLu

13. A demonstration with T = 100, i.e., one stage every 10 seconds
is available at https://youtu.be/1I8mcnHQcW8

TABLE 1
Parameters of our experimental prototype

Hyperparameter Value

Reward
λ 0.25
M 2

Q (bytes) 7000, 11000, 25000

Samples
T 200

B1, B2, B3 100
N1, N3 ∞ (trained offline)

Autoencoder
Dσ̄ , Dσ̃ , Dδ 4

ω 10−8

NN hidden layers { 100, 20 }

Radio orch.
γ 0.05

NN hidden layers {5, 8, 20, 30, 40, 40, 40, 40, 30, 20, 5}

CPU orch.
α, β 0.001

ε(n) 0.995n

NN hidden layers { 20, 40, 80, 40, 10}
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function. The actor has an input size equal to dim(Y), and
output size equal to P + 1 activated with a soft-max layer
guaranteeing that

∑
ci = 1. In contrast, the critic has an

input size equal to dim(Y)+P+1 to accommodate the input
context and the CPU scheduling policy, and an output size
equal to 1 to approximate reward. Both neural networks are
trained using Adam optimizer [39] with α = β = 0.001 and
a mean-squared error (MSE) loss function. Finally, unless
otherwise stated, we setM = 2, λ = 0.25 and ε(n) = 0.995n,
which reduces exploration over time, when online.

Radio orchestrator. We implement our radio orchestra-
tor ν with a set of P neural networks, each with 11 hidden
layers of sizes {5, 8, 20, 30, 40, 40, 40, 40, 30, 20, 5}. We pre-
train them using the dataset mentioned below with Adam
optimizer and use a binary cross-entropy loss function Lν ,
typical in classification problems.

Encoder. Our results in §6 indicate that 4 encoded
dimensions represent a good trade-off between low di-
mensionality and reconstruction error. Hence, we imple-
ment each encoder network with 3 hidden layers of size
{100, 20, 4} (mirrored for the decoders); that is, each 200-
sampled raw context is encoded into a 4-dimensional real-
valued vector and appended together as shown in Fig. 8. We
pre-train our encoders using Adam algorithm to minimize
eq. (3) with ω = 10−8, and the dataset introduced next.

Complexity. The design of our context space, which
aggregates samples across time and users within one stage,
allows us to build a mechanism whose complexity is inde-
pendent of the number of users and the dynamics within
each stage. Complexity of vrAIn does grow with the num-
ber of vRAPs: (i) We use 3 encoders per vRAP; (ii) We use
one radio orchestrator per vRAP; and (iii) althoug we use
a single CPU orchestrator, the number of neurons therein
scales with the number of vRAPs as explained above. This
complexity, however, is negligible during exploitation as the
feed-forward neural networks comprising vrAIn involve
simple matrix multiplications. For instance, computing an
action takes less than 20ms for a cluster with 16 vRAPs
on a single i7-8750 CPU core. Concerning training (back-
propagation), one batch over 100 context-action pairs takes
around 40ms in the same platform. Certainly, the use of
GPUs would expedite these processes. Moreover, because
we use a dedicated encoder/radio orchestrator per vRAP,
the number of vRAPs do not affect their training speed.
However, this complexity does have an impact on the con-
vergence of the actor-critic used for the CPU orchestrator.
We explicitly evaluate this in §5.2.

Training dataset.14 To generate our pre-training set D,
we set up one vRAP and one UE transmitting traffic in
different scenarios and repeat each experiment for both
compute nodes (i7-5600U and i7-8650U), different Q param-
eters, and a wide set of control actions as shown in §1:
– Scenario 1 (static). The UE is located at a fixed distance

from the vRAP and transmits Poisson-generated UDP
traffic with fixed mean and fixed power for 60 seconds (i.e.
three contextual snapshots). We repeat the experiment for
different mean data rates such that the load relative to the
maximum capacity of the vRAP is {1, 5, 10, 15, . . . , 100}%
and different transmission power values such that the

14. Our dataset is available at https://github.com/agsaaved/vrain.
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Fig. 12. Synthetic context patterns. SNR {〈σ̄(t)
n 〉, 〈σ̃

(t)
n 〉} patterns are

generated by changing the UE’s tx power to emulate one ∼120-s round-
trip (Scenario 2 in §4.3) in 6 stages (left plot). Load 〈δ(t)

n 〉 is sampled
from a Poisson process with a mean that varies every 6 stages as δ̄ =
{5, 10, 30, 50, 70, 85, 50, 30, 10}% of the maximum capacity (right plot).

mean SNR of each experiment is {10, 15, 20, . . . , 40} dB.
Figs. 2, 3 and 4 visualize some results from this scenario.

– Scenario 2 (dynamic). We let the UE move at constant
speed on a trajectory that departs from the vRAP location
(maximum SNR), moves ∼25 meters away (minimum
reachable SNR) and then goes back to the vRAP location.
We repeat the experiment 12 times varying the speed such
that the whole trajectory is done in {10, . . . , 120} seconds.

– Scenario 3 (2 users). We repeat Scenario 2 with two UEs
moving in opposite directions, producing in this way
patterns with different SNR variances.

Digital twins. In order to pre-train vrAIn as explained
in §3.4, we implement a digital replica for each vRAP i, each
with a different combination of computing platform and Q,
as we did to collect our training dataset D. As explained
in §3.4, we implement, for each vRAP i, two feed-forward
neural networks τi,ω1

→ (J̃i) and τi,ω2
→ (ε̃i), each with 10

hidden layers and a total of 273 units and trained using a
total of 8833 samples from our experience dataset (described
above) and the Adam algorithm [39].

Offline batch training. We set the training batch size to
B = 100 context samples, and generate 500 test contexts
(not used in the training) for validation. We asses the per-
formance of the test contexts every 200 episodes to evaluate
the convergence in §5.2.

5 LEARNING EVALUATION

Hereafter, we perform a thorough assessment of vrAIn that
spans over §5, §6 and §7. To this aim, and unless otherwise
stated, we use the synthetic context patterns shown in
Fig. 12, with periods of 54 stages, for most of our online
experiments. Note that these sequences are constructed to
reflect extreme scenarios with high variability. We however
evaluate vrAIn in a production RAN deployment in §7.

We start this evaluation, in this section, assessing
vrAIn’s learning process. Specifically, we evaluate:
• The ability of vrAIn’s autoencoders to reduce the di-

mensionality of the input raw context sequences while
preserving expressiveness (§5.1); and

• The convergence of vrAIn upon different settings,
computing infrastructures and number of vRAPs (§5.2).

5.1 Encoder

The performance of vrAIn’s context encoders is essential to
derive appropriate CPU and radio orchestration functions.
We thus begin our evaluation by validating the design of
our autoencoder.

First, we evaluate different encoder dimensions (ranging
from 2 to 128) for the different sequence types of our
context (mean SNR, SNR variance and data load patterns).
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Fig. 14. Examples of 200-dimensional raw vs reconstructed SNR se-
quences (top). 4-dimensional encoded representations (bottom).

To this aim, we train our autoencoder with 66% of our pre-
training dataset, leaving the remaining 34% for validation.
Fig. 13 depicts the resulting mean squared error (MSE)
of the reconstructed sequences for one sequence type (the
mean SNR). From the figure, we conclude that 4 dimensions
provide a good trade-off between low dimensionality and
reconstruction error, and hence we use this value hereafter.

Second, we visually analyze if the encoder with the
above setting captures higher-order pattern information.
Fig. 14 shows a few examples of mean SNR sequences
〈σ̄(t)〉 from our pre-training dataset (red, top subplots)
encoded into 4-dimensional vectors (bottom subplots) and
reconstructed using the decoders introduced in §3.2.1 (blue
line, top plots). We observe that the decoder reconstructs the
input raw sequences remarkably well. We have observed a
similar behavior for the other sequence types in our dataset:
SNR variance 〈σ̃(t)〉 and data load 〈δ(t)〉 (results omitted
for space reasons). We hence conclude that our design is
effective in projecting high-dimensional contexts into man-
ageable representations—input signals of our controller.

5.2 Convergence

Offline learning scalability. We first assess the scalability of
our offline training approach, introduced in §3.4. To this aim,
we use Algorithm 2 to train vrAIn for different cluster sizes
and computing capacities. To simplify the presentation, we
focus on our i7-5600U computing infrastructure and setQ =
7 KBytes, but similar results are obtained for other settings.
We hence set up vRANs with {1, 2, 4, 8, 16} vRAPs and, re-
spectively, {2, 4, 8, 12, 22} cores of computing capacity; and
plot in Fig. 15 the evolution over time of normalized reward—
computed as 1

P

∑
i∈P J̃

(n)
i −Mε̃

(n)
i − λc(n)

i , where J̃ (n)
i is

the fraction of samples where the aggregate data queued
by the vRAP is below a target Qi and ε̃

(n)
i corresponds

to the fraction of unsuccessfully decoded subframes—CPU
savings (relative to a static orchestration that provisions
all computing capacity), and decoding error probability.
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Fig. 15. Offline learning with different cluster sizes. Our offline training
method introduced in §3.4 scales to clusters of multiple vRAPs.
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Fig. 16. Learning convergence of Algorithm 1 (online) with different
settings. Pre-training offline with Algorithm 2 prior to online learning
(Algorithm 1), even when using pre-training data from different platforms
(“w/ transferred training”), expedites convergence.

For visualization purposes, we normalize reward between
0 and 1, where 0 corresponds to 100% buffer occupancy
violation, 100% decoding errors and 100% CPU usage and
1 corresponds to 0% violation, 0% decoding errors and 0%
CPU usage.

Unsurprisingly, larger clusters require longer conver-
gence times because the space of contexts and actions grows
exponentially with the number of vRAPs within the cluster.
It is worth highlighting that this pre-training is done offline,
as explained in §3.4, and can be expedited using specialized
hardware such as GPUs and/or larger batch sizes. Hence,
from these results, we conclude that vrAIn can easily
handle clusters as large as 16 vRAP, which is well above
the expected number of aggregated DUs for 5G [40], [41].

Online learning with different settings. We now eval-
uate the convergence of vrAIn during online operation, as
introduced in Algorithm 1, i.e., interacting with our exper-
imental vRAN platform. To this aim, we assess different
configurations and computing infrastructures for a single-
vRAP system with unconstrained computing capacity, to
ease presentation. We hence present in Fig. 16 the evolution
over time of normalized reward, as we did before.

We evaluate convergence for both computing infras-
tructures used in §4.3 and different values of Q, consid-
ering three training methods: (i) online training without
offline pre-training, i.e., only Algorithm 1, labelled as “w/o
offline pre-training”; (ii) pre-trained offline prior to
online execution, i.e., Algorithm 2 prior to Algorithm 1,
labelled as “w/ offline pre-training”; and (iii) pre-
trained offline for a different computing platform, i.e.,
using Algorithm 2 for “i7-5600U” computing node prior
to running vrAIn online (Algorithm 1) over “i7-8650U”
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Fig. 17. Evolution over time (top) and distribution (bottom) of QoS
performance (left) and CPU scheduling policy (right).

computing node (and viceversa), which we refer to as “w/
transferred training”. As we can see from the figure,
vrAIn requires between 500 and 1000 stages to converge
for the highly dynamic contexts under evaluation when it
is not pre-trained. As expected, when vrAIn is pre-trained
offline, convergence becomes much faster. Furthermore,
such offline pre-training does not necessarily have to be
carried out from the same platform, as “w/ transferred
training” allows fast convergence too, which allows
reusing pre-training data across different vRAN systems.

6 PROTOTYPE EVALUATION

Next, we evaluate our prototype implementation. To this
aim, we use the same synthetic contexts shown in Fig. 12;
and, to simplify the analysis, we focus hereafter our evalu-
ation on our “i7-5600U” computing infrastructure only and
assess vrAIn online in exploitation after offline training.
Specifically, we assess the ability of vrAIn to:
• Achieve a good trade-off between cost (CPU usage) and

QoS when there are sufficient CPU resources (§6.1); and
• Maximize performance and provision CPU resources

efficiently across vRAPs when they are scarce (§6.2).

6.1 Unconstrained computational capacity
We first consider a single vRAP, which depicts a scenario
where computational capacity is “unconstrained” since, as
shown by Figs. 2-4, each of our vRAP prototypes requires
one full CPU core at most.

Performance. We start our evaluation depicting in Fig. 17
(top) the temporal evolution of (i) QoS performance (J in
eq. (2)), and (ii) compute control actions taken by vrAIn,
for 4 periods (each comprised of 54 stages) of our synthetic
context patterns, and the same Q values used before. Notice
that vrAIn timely follows the context dynamic patterns
shown in Fig. 12. In turn, Fig. 17 (bottom) presents the
distribution across all stages. We draw three conclusions
from these experiments. The first conclusion is that, the lower
the parameter Q, the higher the CPU allocation chosen
by vrAIn; indeed, higher CPU allocations induce lower
decoding delay and thus lower buffer occupancy. The second
conclusion is that higher Q targets render higher QoS perfor-
mance, which is intuitive as lower Q implies requirements
that are harder to meet. The third conclusion is that vrAIn
achieves zero decoding error rate when not exploring. This
is shown in Fig. 18 (left top) along with two benchmarks that
we introduce next. We further observe that vrAIn follows
load and SNR dynamics; also, as the computing capacity is
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Fig. 18. vrAIn vs two benchmarks: Cst-Rleg and Cst-RvrAin. vrAIn
renders a good trade-off between CPU allocations (cost) and QoS.

always sufficient, the radio orchestrator does not bound the
eligible MCSs (not shown for space reasons).

Static benchmarks. Let us consider two benchmarks:
(i) Cst-Rleg: Static CPU orchestration assigning fixed allo-

cations and legacy radio orchestration (CPU-unaware);
(ii) Cst-RvrAin: Static CPU orchestration and vrAIn’s radio

orchestration ν, which is CPU-aware.
Note that Cst-RvrAin goes beyond the related literature clos-
est to our work, which we revise in §8, namely [5], [8], as we
augment such approaches with the ability to adapt the radio
allocations to both SNR and traffic load dynamics. We apply
the above benchmarks in our platform for the same contexts
used before and for a wide range of static CPU assignments
from {30, . . . , 100}%. The results, shown in Fig. 18, depict
the decoding error rate (left) and QoS performance (right)
of both benchmarks as a function of vrAIn’s CPU savings
for all static orchestrations (i.e., the mean saving/deficit that
vrAIn has over the static orchestrations for the chosen CPU
allocation). The results make evident the following points:
– Static CPU orchestrations that provide equal or less com-

puting resources than vrAIn’s average allocation (x-axis
≤ 0) render substantial performance degradation. Specifi-
cally, Cst-Rleg yields high decoding error rate because it
selects MCSs based on radio conditions only and does not
take into account the availability of computing resources.
Conversely, Cst-RvrAin worsens QoS performance be-
cause its CPU orchestrator fails to adapt to the context
dynamics, e.g., data queues build up excessively during
peak traffic;

– Static CPU orchestrations that increase the allocation of
computing resources above vrAIn’s average allocation (x-
axis > 0) only match vrAIn’s performance when the full
pool of computing resources are allocated (with > 20%
more CPU usage over our approach).

As a result, we conclude that vrAIn achieves a good balance
between system cost and QoS performance.

Dynamic benchmark. We next assess the performance of
vrAIn in contrast to a simple dynamic CPU orchestration
function that assumes a linear relationship between con-
text, computing resources, and performance. This approach,
which we refer to as Clin-RvrAIn, selects a computing control
decision following c

(n)
lin = Cmin + δn

δmax (Cmax − Cmin),
where Cmin and Cmax are, respectively, the minimum and
the maximum values that the scheduling policy can take;
δn denotes the new bit arrivals at stage n; and δmax is
the maximum value of bit arrival per stage. In this way,
Clin-RvrAIn selects a CPU scheduling policy within the in-
terval [Cmin, Cmax] proportionally to the normalized load
δn/δ

max. Given the non-linear nature of our system, a linear
approximation will fail to provision optimal results irrespec-
tive of the choice of [Cmin, Cmax]. Given that computing an
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Fig. 19. vrAIn vs a simple dynamic computing orchestrator.
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Fig. 20. Performance of vrAIn with heterogeneous UEs compared to a
legacy computing-agnostic approach that uses all computing capacity.

optimal Cmin is hard and depends on the actual platform,
we evaluate this benchmark for multiple values of Cmin.
Fig. 19, which shows the average CPU usage in the x-axis,
and mean QoS performance and the decoding error rate, re-
spectively, in the y-axis. We evaluate Clin-RvrAIn for different
values of Cmin ranging from 0% to 90% and compare the
results with the performance attained by vrAIn. Note that,
when Cmin = 0, the selected CPU scheduling policy is very
low for low traffic loads, providing a high rate of decoding
errors. Conversely, highCmin values avoids decoding errors
but yield over-provisioning of CPU resources. In contrast,
vrAIn attains maximum QoS performance with roughly
10% less amount of CPU resources and 20% lower decoding
error rate when compared to the best possible configuration
of Clin-RvrAIn.

Heterogeneous UEs. By encoding SNR variance patterns
σ̃ across all UEs in each vRAP, we enable vrAIn to adapt
to contexts involving heterogeneous UEs. To analyze the
behavior of vrAIn in such environments, we set up an
experiment with two UEs (UE1 and UE2) attached to a vRAP.
We fix the transmission power of UE1 such that its mean
SNR is equal to 32 dB (high SNR) and vary the transmission
power of UE2 to induce different values of SNR variance in
the sequence of signals handled by the vRAP. To focus on
the impact of the SNR variability, we fix the load of both
UEs to 7.3 Mb/s and set Q = 25 Kbytes. Fig. 20 depicts
the resulting aggregate throughput (relative to the load),
QoS performance (J ) and CPU scheduling policy when the
SNR variance is σ̃ = {15, . . . , 80}, and use a scheduling
policy that allocates all CPU resources to the vRAP as
a benchmark (“100% provisioning”). We observe that
throughput and J degrade as σ̃ increases, due to the lower
signal quality of UE2. We conclude that vrAIn performs
well under heterogeneous UEs, as it provides substantial
savings over “100% provisioning” while delivering a
similar performance.

6.2 Constrained computing capacity

To complete our experimental evaluation, we evaluate
vrAIn under limited CPU capacity. To this end, we set up a
second vRAP in our i7-5600U compute node limiting its ca-
pacity to a single CPU core, i.e., both vRAPs (“vRAP1” and
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Fig. 21. vRAN with 2 vRAPs. vrAIn adapts the radio scheduling policy
to minimize decoding errors (which are negligible and therefore not
shown).

“vRAP2”) have to compete for these resources during peak
periods. Moreover, we fix hereafter Qi = 7 Kb ∀i = {1, 2}.

Analysis of vrAIn dynamics. We first let the vRAPs
experience the same dynamic context patterns used before
but 3 times slower for “RAP1”, i.e., each period of “RAP1”
corresponds to 3 of “RAP2”. This renders the SNR and
load patterns shown in Fig. 21 (top) and allows us to study
diverse aggregate load regimes. Fig. 21 depicts the temporal
evolution of vrAIn’s CPU scheduling policy (3rd plot) and
radio scheduling policy (bottom plot). First, we can observe
that vrAIn distributes the available CPU resources across
both vRAPs following their context dynamics—equally be-
tween them when the contexts are similar. More impor-
tantly, we note that vrAIn reduces radio scheduling policies
when the aggregate demand is particularly high to mini-
mize decoding errors due to CPU deficit.

Comparison against benchmark approaches. We now
assess the performance of vrAIn against the following
benchmarks in scenarios with heterogeneous vRAPs:
(i) CvrAIn-Rleg: vrAIn’s CPU orchestrator and a legacy

radio scheduler that is blind to the availability of CPU
capacity.

(ii) R-Optimal: An oracle approach that knows the future
contexts and selects the CPU and radio scheduling poli-
cies that maximize reward by performing an exhaustive
search over all possible settings. Although unfeasible in
practice, this provides an upper bound on performance.

(iii) T-Optimal: An oracle like R-Optimal that opti-
mizes overall throughput instead of reward. Like
R-Optimal, it is unfeasible in practice.

(vi) Heuristic: A linear model between MCS and CPU
load is obtained by fitting a standard linear regres-
sion to our dataset. Using this model, we derive the
CPU load needed by each RAP for the largest MCS
allowed with the current mean SNR. If the system
capacity is sufficient to handle such CPU load, we apply
the resulting scheduling CPU/MCS policy. Otherwise,
we apply the algorithm of [42] to obtain a fair CPU
scheduling policy and use our linear model to find the
corresponding MCS scheduling policy.

In order to evaluate these mechanisms, we use similar
dynamic contexts to those of Fig. 21 but vary the average
traffic load of “RAP2” δ̄2 such that δ̄2 = k · δ̄1 to illustrate
the impact of heterogeneous conditions.

Fig. 22 shows the performance for all approaches in
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Fig. 22. vRAN with 2 heterogeneous vRAPs vs. 4 benchmarks:
a throughput-optimal oracle (T-Optimal), a reward-optimal oracle
(R-Optimal), vrAIn’s CPU scheduling policy with a legacy radio
scheduler blind to the CPU availability (CvrAIn-Rleg), and an heuristic
that leverages on a linear fit with our dataset.

terms of (i) CPU scheduling policy, (ii) radio scheduling pol-
icy, (iii) decoding error rate, (iv) throughput relative to the
load, and (v) reward, for k = { 1

3 ,
2
3 , 1}. The main conclusion

that we draw from the above results is that vrAIn performs
very closely to the optimal benchmarks (R-Optimal and
T-Optimal) and substantially outperforms the other ones
(CvrAIn-Rleg and Heuristic). Indeed, vrAIn provides
almost the same reward as R-Optimal (the difference is
below 2%) and almost the same throughput as R-Optimal
(the difference is also below 2%). Furthermore, it provides
improvements over 25% as compared to CvrAIn-Rleg and
Heuristic both in terms of reward and throughput.

Looking more closely at the results for vrAIn, we ob-
serve that, as expected, the allocation of computing re-
sources of our CPU orchestrator favors the RAP with higher
load, i.e. “RAP1” for k = { 1

3 ,
2
3}, and provides very sim-

ilar allocations for δ̄2 = δ̄1. In addition, we observe that
vrAIn appropriately trades high MCS levels off for near-
zero decoding error, selecting the highest possible MCS
while avoiding decoding errors.

In contrast to vrAIn, CvrAIn-Rleg and Heuristic fail
to select appropriate scheduling policies. The former fails
to decode a large number of frames: as it is blind to the
computing capacity, it employs overly high MCSs under
situations of CPU deficit, and thus sacrifices roughly 25%
of throughput w.r.t. vrAIn. The latter does adapt its radio
scheduling policy to the CPU capacity; however, it does so
employing an oversimplified model that does not provide a
sufficiently good approximation and yields poor choices: in
some cases, it selects overly high MCS bounds, leading to
decoding errors, while in other cases it chooses overly low
MCSs, leading to poor efficiency. As a result, Heuristic
also sacrifices substantial throughput w.r.t. vrAIn (losing as
much as 30% throughput).

TCP flows. Finally, we assess the performance of vrAIn

RAP1 RAP2

0

20

40

60

TCP UDP

C
P

U
 p

ol
ic

y 
(%

)

0

3

6

9

12

15

18

TCP UDP

R
ad

io
 p

ol
ic

y 
(M

C
S

)

0

25

50

75

100

TCP UDP

D
ec

od
in

g 
er

ro
r 

(%
)

0

25

50

75

100

TCP UDP

T
hr

ou
gh

pu
t (

%
)

Fig. 23. vrAIn impact on TCP performance

with TCP traffic. Fig. 23 shows the performance of vrAIn
using both TCP and UDP transport protocols for the same
context dynamics used before when δ̄2 = δ̄1. The figure
shows that both transport layer protocols obtain similar
performance: vrAIn attains similar CPU savings for TCP
and UDP (left plot of Fig. 23) without penalizing the overall
throughput (right plot of Fig. 23). This shows that vrAIn
works well under short-term traffic fluctuations such as the
ones resulting from the adaptive rate algorithm of TCP.

7 LARGE-SCALE EVALUATION

The above experiments do validate the feasibility of our ap-
proach in practice and highlight the main features of vrAIn
when processing uplink traffic, the most demanding case in
terms of computing resources. However, there are a number
of issues that may appear when processing downlink traffic
in large scale scenarios and deserve attention. In the follow-
ing, we complement our prior experimental evaluation with
a simulation-based study of the performance of vrAIn in a
real-world RAN deployment and under different strategies
for dimensioning computing capacity. To this aim, we now
focus on downlink traffic and assume that each vRAP is
managed by a single instance of vrAIn (each vRAN cluster
contains one vRAP). Note that this is a worst-case scenario for
vrAIn because we disable vrAIn for exploiting multi-vRAP
diversity when pooling computing capacity, which provides
substantial gains over legacy computing-agnostic schemes
as demonstrated in §6.2. In this way, the results shown below
represent a lower bound of the gains attainable by vrAIn.

7.1 Simulation framework
To assess the performance attained by vrAIn in a real-world
scenario, we simulate vrAIn over a production RAN de-
ployment in Romania15, with 197 access points distributed
as shown in Fig. 24a. As we can observe from the figure,
there is a higher density of RAPs in the center (a big
city) and the RAN is sparser by the outskirts (covering
mostly highways and small commuter suburbs). In order
to leverage our training data, and without loss in generality,
we assume all RAPs are SISO 10-MHz LTE vRAPs with the
same behavior as our LTE vRAPs analyzed in §1.

Our custom-built simulator follows the 3GPP guidelines
for LTE performance evaluation [43] and its parameters are
detailed in Table 2. The Signal-to-interference-plus-noise-
ratio (SINR) perceived by the UEs is obtained by aggre-
gating the interference of all active RAPs. For a given
SINR, we compute the CQI ([16], Table III) of this UE, and
then the maximum allowed MCS associated with this CQI
according to 3GPP specification. Further, we implement a
random mobility model for the UEs, ensuring a minimum

15. A statistical analysis of this network can be found in [15].
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TABLE 2
Parameters of our simulation framework

System bandwidth 10 MHz
LTE subframe duration 1 ms

Transmission power 46 dBm

Antenna pattern AH(φ) = −min
[
12

( φ
φ3dB

)2
, Am

]
,

φ3dB = 70 degrees Am = 25 dB
Antenna gains 14 dBi

Path loss 128.1 + 37.6 · log10(R[Km]),
R: vRAP to UE distance

Shadow fading Lognormal distribution
10 dB standard deviation

Thermal noise -176 dBm
Number of vRAPs 197

Mean Nr. UEs per vRAP 10
UE mobility 20% @ 100 km/h, 80% @ 3Km/h
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Fig. 24. (a) Deployment of an operational RAN in Romania. Red and
black dots represent, respectively, radio sites and backhaul aggregation
nodes. (b) Traffic load pattern over a period of 24h of a regular weekday.

distance between UE and RAP of 35 m, as recommended
by 3GPP [43]. Finally, due to the difficulty to capture the
computing behavior of our vRAPs in a tractable model for
simulation (see §1), we have implemented a deep neural net-
work (DNN), trained using our dataset, to determine when
decoding errors occur due to lack of computing resources.

We simulate one regular week using synthetic traffic
patterns obtained from [44], which emulate the behavior
of real RANs at scale (see [44] for details). To simplify the
analysis, in the following we focus on a 24-hour period
during weekdays—with the traffic profile (relative to the
capacity of the system) shown in Fig. 24b; but similar
conclusions can be obtained from any other day. We further
assume that the aggregate computing capacity of the whole
vRAN is dimensioned to the minimum amount of CPU
resources required such that no violations of the encoding
deadlines due to CPU deficit occur during the load peak of
the day when not using vrAIn, which we refer to as “100%
provisioning”. We also study the behavior of vrAIn
when the system is under-provisioned to 70% and 85% of
that computing capacity, which enables capital cost savings.

7.2 Performance and cost savings at scale

As demonstrated in our experimental campaign of §6,
vrAIn provides substantial operational cost (OPEX) savings
(reduction of CPU usage) when there is enough computing
capacity (§6.1). We also demonstrated that vrAIn enables
capital cost (CAPEX) savings too by adapting (maximize
performance) to scenarios where computing capacity is
under-provisioned (§6.2). Our goal here is to validate this
behavior in a real-world deployment.

In this way, in the following, we analyze the through-
put performance (relative to the capacity of the system),
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Fig. 25. Performance evolution over time for a computing capacity
dimensioned for the peak load (“100% provisioning”) and for 70%
and 85% of that computing capacity (“70% provisioning” and “85%
provisioning”, respectively). Mean relative throughput (top). Mean
buffer occupancy (bottom).

CAPEX OPEX

70% provisioning 85% provisioning 100% provisioning

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
0

10

20

30

Time

C
P

U
 s

av
in

gs
 (

%
)

Fig. 26. vrAIn’s savings relative to a static computing-agnostic ap-
proach provisioned with sufficient CPU resources for the peak demand.

buffer state dynamics (a proxy of delay performance),
CAPEX/OPEX savings and inter-cell interference with
vrAIn and a legacy approach that uses all computing
resources available and a legacy radio scheduler that is
agnostic to the availability of computing resources.

Provisioning computing capacity for the peak. Let
us first focus on the evolution of throughput perfor-
mance, buffer states and cost savings when the com-
puting capacity is provisioned to accommodate the peak
load (right-most plots in Figs. 25 and 26, labeled as
“100% provisioning”). From Fig. 25 we observe that
vrAIn achieves roughly the same throughput perfor-
mance and slightly higher buffer sizes (up to 5%) than
“Legacy”. This is explained because vrAIn trades off this
slightly higher delay for substantial OPEX savings. This
is shown in Fig. 26 (right-most plot, labeled as “100%
provisioning”), where vrAIn achieves between 10% and
20% of OPEX savings. Note however that this difference in
delay vanishes when vrAIn is configured to favor perfor-
mance over OPEX savings as shown in §6.1 (results omitted
here for the sake of space).

Under-provisioning of computing capacity. We now
analyze the case where we impose under-provisioning to
obtain aggressive CAPEX gains by reducing the availability
of computing capacity to 85% and 70% relative to the di-
mensioning strategy discussed before, and labeled as “85%
provisioning” and “70% provisioning”, respectively,
in Figs. 25 and 26. The evolution of throughput and buffer
states in Fig. 25 for these two scenarios (left-most and
middle plot, respectively) make it evident how vrAIn
enables aggressive CAPEX savings while retaining high
performance gains when compared to legacy computing-
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Fig. 27. Evolution over time of mean radio scheduling policy, vRAP
airtime usage, SINR across all vRAPs.

agnostic approaches. Specifically, vrAIn provides up to 50%
and 55% throughput gains over our legacy scheme when,
respectively, the computing capacity is under-provisioned
to 85% and 70% of the peak load, in average, and during
the time of peak demand (between 18:00 and 00:00). The
reason lies on the fact that vrAIn’s ability to optimize jointly
radio and computing scheduling policies allows vrAIn to
better accommodate the demand along the time domain,
trading off delay for near-zero violations of the encoding
deadlines due to a deficit of computing capacity. In contrast,
legacy’s agnostic behavior with respect to the availability of
computing capacity yields substantial throughput loss due
to a high rate of violations of the encoding deadlines during
instantaneous peak demands. This produces a cascade effect
causing large amounts of time wasted in re-transmissions
and rendering even larger perceived latency: up to 160%
and 73% higher buffer occupancy over vrAIn for 85% and
70% of computing provisioning, respectively, in average,
and in the same period of peak demand.

A final remark is that vrAIn adapts, i.e., maximizes
performance, to constrained computing environments. This
can be observed by comparing the performance indicators of
both “70% provisioning” and “85% provisioning”
to those shown for “100% provisioning”. In particular,
vrAIn has no loss in throughput performance for “85%
provisioning” and only up to 10% throughput loss for
“70% provisioning”, in average, and during the same
period of peak demand discussed earlier. This contrasts
with the substantial throughput loss attained by our legacy
approach: up to 65% and 80% of throughput loss in those
same conditions. In terms of latency, vrAIn only suffers
from 1% increased in mean buffer occupancy in the case of
“85% provisioning” relative to the buffer occupancy for
“100% provisioning” (in contrast to the 282% increase
of the legacy approach), and 73% increased in mean buffer
occupancy with 75% under-provisioning (in contrast to the
337% increase of the legacy approach).

Inter-cell interference. The ability of vrAIn to trade-
off delay for throughput maximization, particularly with
under-provisioned computing systems, may, however, incur
additional inter-cell interference. To assess this, we plot in
Fig. 27 the evolution over time of the average SINR across
all RAPs in the system (bottom plot), the relative channel

airtime utilization averaged across all vRAPs (middle plot)
and mean MCS index used for both vrAIn and a legacy
approach. Perhaps surprisingly, we do not observe substan-
tial difference between vrAIn and “Legacy” in terms of
SINR, which leads us to conclude that vrAIn has negligible
impact on inter-cell interference. The rationale is the follow-
ing. As expected, vrAIn’s radio MCS patterns considerably
change for different computing provisioning strategies. For
instance, for 70% under-provisioning, we can observe that
vrAIn uses considerably low MCSs, which yields remark-
ably high channel time utilization. In contrast, “Legacy”
uses roughly the same mean MCS patterns irrespective
of the availability of computing capacity as its choice of
MCS only depends on the channel quality. However, be-
cause these choices render high rates of violations of the
encoding deadlines (due to deficit of computing resources),
substantial channel time is occupied with re-transmissions,
as evidenced by the mean airtime patterns in the middle
plot of Fig. 27. As a result, under-provisioning leads to an
increased channel utilization for both vrAIn and “Legacy”.
Importantly, vrAIn uses this additional channel time efficiently,
with useful transmissions, as opposed to legacy’s wastage of
time re-transmitting data that will not be able to be encoded
in time due to deficit of computing capacity.

8 RELATED WORK

There exists a large amount of literature on the management
of wireless resources in cellular systems, namely, scheduling
and MCS selection mechanisms, with different scenarios
and optimization criteria (e.g., [45], [46], [47]). The advent
of virtualized RAN has fostered some research work to un-
derstand the relationship between computing and wireless
resources, e.g., [3], [5].

Theoretical work. The works of [8] and [5] set a the-
oretical basis for computationally-aware wireless control
mechanisms. The former formulates a max-rate optimiza-
tion problem subject to the availability of computational
resources assuming the feasibility of real-valued rate alloca-
tion vectors. The later takes a step further and jointly opti-
mizes MCS selection and physical resource block allocation,
which results in a more practical approach. Nonetheless,
both works rely on the same model relating computational
requirements and SNR, which needs to be pre-calibrated
for the platform and scenario they operate, assume full
buffers (i.e. they study the resource allocation problem at the
system’s capacity boundary) and neglect variations on the
arrival bit-rate load. This issue is addressed in [48], which
combines real-time traffic classification and CPU scheduling
in a mobile edge computing (MEC) setup. However, they
also rely on a simplistic baseband processing model and a
lack of experimental validation.

Experimental work. The work of [3] is one of the first
experimental works that study the potential cost savings
when exploiting the variations across LTE vRAPs’ process-
ing load. Nevertheless, the heuristic they propose does not
consider variations on the SNR, which we have shown has
a great impact on the overall system, and assume that the
distribution of the load is known a priori. The authors of
[49] implement PRAN, a programmable LTE vRAN system
with dynamic computational resource sharing that how-
ever relies on a very simplistic resource demand prediction
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model. PRAN’s data-plane re-engineering is the most impor-
tant contribution of [49], which is complementary to our
work. The authors of [50] provide an experimental study
on the relationship between throughput and computational
demand, but it does not consider contextual dynamics (SNR,
traffic load) and also relies on a very simplistic resource
demand prediction model. RT-OPEX [6] implements a CPU
scheduler tailored-made for vRAP workload, which can
easily be integrated in vrAIn.

In contrast to this prior work, we make an in-depth ex-
perimental study of the relationship between performance,
radio and computing resources. We conclude that the un-
derlying model is far from trivial to design efficient opti-
mization schemes as it depends on the context (SNR, traffic
load patterns), the vRAP configuration and the computing
platform. In light of this, our approach, vrAIn, exploits
model-free learning methods to address the dynamic vRAN
resource control problem and, as a result, adapts to contex-
tual changes and/or different platforms.

9 CONCLUSIONS

Virtualized radio access networks (vRANs) are the future
of mobile access design. In this paper, we have presented
vrAIn, a resource orchestration solution tailored to vRANs
that dynamically learns the optimal allocation of computing
and radio resources. Given a specific QoS target, vrAIn
determines the allocation of computing resources required
to meet such target and, in case of limited capacity, it jointly
optimizes radio configuration (MCS selection) and CPU
allocation to maximize performance. To this end, vrAIn
builds on deep reinforcement learning to adapt to the
specific platform, vRAN stack, computing behavior, and
radio characteristics. Moreover, we developed an offline pre-
training method, which scales to clusters of multiple vRAPs,
and relies upon past experience with the real system, obser-
vations artificially obtained with a digital twin and batch
training to expedite learning convergence.

Our results shed light on the behavior of vrAIn across
different scenarios, showing that vrAIn is able to meet the
desired performance targets while minimizing CPU usage,
and gracefully adapts to shortages of computing resources.
We further showed that performance is close to optimal and
vrAIn provides substantial gains over static assignments or
simple heuristics. Moreover, when evaluated at scale using
topological data from a real RAN, we showed that vrAIn
can achieve large savings from both operational and capital
infrastructure expenditures while maximizing performance.

To the best of our knowledge, this is the first work that
thoroughly studies the computational behavior of vRAN,
and vrAIn is the first practical approach to the allocation of
computing and radio resources to vRANs, adapting to any
platform by learning its behavior on the fly.
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