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Summary

Heterogeneous Networks (HetNets), in which small cells overlay macro cells, are
a cost-effective approach to increasing the capacity of cellular networks. However,
HetNets have raised new issues related to cell association and interference man-
agement. In particular, the optimal configuration of interference coordination (IC)
parameters is a challenging task because it depends on multiple stochastic processes
such as the locations of the users, the traffic demands, or the strength of the received
signals. This work proposes a self-optimization algorithm capable of finding the
optimal configuration in an operating network.We address the problem using a Rein-
forcement Learning (RL) approach, in which the actions are the IC configurations,
whose performances are initially unknown. The main difficulty is that, due to the
variable network conditions, the performance of each action may change over time.
Our proposal is based on two main elements: the sequential exploration of subsets of
actions (exploration regions), and an optimal stopping strategy for deciding when to
end current exploration and start a new one. For our algorithm, referred to as Local
Exploration with Optimal Stopping (LEOS), we provide theoretical bounds on its
long-term regret per sample and its convergence time. We compare LEOS to state-
of-the-art learning algorithms based on multi-armed bandits and policy gradient RL.
Considering different changing rates in the network conditions, our numerical results
show that LEOS outperforms the first alternative by 22%, and the second one by 48%
in terms of average regret per sample.

KEYWORDS:
Interference coordination, heterogeneous networks, reinforcement learning, online learning

1 INTRODUCTION

The Heterogeneous Network (HetNet) architecture, in which multiple small cells overlay each macro cell, is used in current and
forthcoming mobile access networks to increase spacial spectral reuse, enhance network coverage, and reduce the load of the
macro cells (offloading)1. To increase spectrum efficiency, HetNets need to incorporate an interference management scheme,
such as the enhanced Inter-Cell Interference Coordination (eICIC) mechanism defined by the Third Generation Partnership
Project (3GPP) for Long Term Evolution Advanced (LTE-A) networks2. This mechanism is expected to remain relevant for 5G
deployments3, because of their higher density and the incorporation of LTE in the 5G radio access thanks to the network slicing
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functionality. Additionally, there are several interference management proposals for 5G New Radio (5G NR) similar to eICIC4.
In eICIC, the interference coordination between macro cells (macro enhanced Node B or macro eNB, in 3GPP terminology) and
small cells (pico eNB) is governed by two parameters: Cell Range Extension (CRE) bias, and Almost Blank Subframe (ABS)
ratio.
The CRE bias is an offset added to the small cell power level received at the user terminals, favouring the user association

to the small cell instead of the macro cell, thus determining the effective range of the small cell. The ABS ratio refers to the
proportion of radio access subframes that are muted by the macro cell in order to alleviate the interference experienced by the
small cell users. The configuration of these parameters is not standardized, and is a challenging issue because they have a joint
effect on the user throughput, and must be continuously readjusted due to the random changes in the network conditions5.
Earlier works on eICIC6,7,8,9,10 relied, in general, on mathematical modeling. This approach is appropriate, e.g., to estimate the

network capacity, but not to optimize the configuration of a real operating network, because of the limitations of themathematical
models. For example, there are no accurate models allowing mathematical tractability of the 5th percentile user throughput,
which is defined by the 3GPP11 to characterize the performance of LTE networks.
In contrast, we follow a data-based approach. This means that we do not try to predict the system performance using a

mathematical model characterizing propagation effects, traffic behaviors, user movement patterns, and so forth. Instead, we
propose a scheme that applies configurations to the system, and observes the resulting performance. These observations allow a
controller to learn the best configuration. Of course this must be done in a cautionary and efficient way. A naive strategy would
simply sample every possible configuration repeatedly, estimate their performances statistically, and then select the empirical
best one. However, this extensive and indiscriminate sampling scheme is harmful to the user performance and unsuitable for
online operation under time-varying conditions.
The reduction of the performance loss due to non-optimal samples is the main objective of Multi-Armed Bandit (MAB)

algorithms12. Besides, the system response to eICIC configurations has been shown to be unimodal13, which allows the MAB
algorithms to be sequentially applied in small subsets of actions (Local Exploration, LE), following an iterative process that
resembles a stochastic gradient ascent5. Exploiting unimodality boosts the performance of MAB algorithms. However, the main
difficulty for applying this strategy in our scenario is that the network conditions such as the traffic intensity, spatial distribution
of the UEs and others, change over time, implying that the expected performance at each action is time-varying. This variability
raises challenging questions such as: what is the optimal duration of each LE stage? Can we track the optimal configuration as
it changes? At what cost?
To solve the above issues, we propose an algorithm that combines Reinforcement Learning (RL) and MAB for unimodal

responses. The main idea is to dynamically adjust the time spent on each LE stage by making an optimal stopping (OS) decision
after every observation. OS problems can be typically addressed by RL, but in our case it is a challenging task because the
change rate of the system is unknown, and because of the large dimension of the state space, which comprises all the possible
histories of past observations (selected actions and observed performances). Our solution strategy circumvents these difficulties
by leveraging the structure of the problem, casting it into a sequential likelihood ratio test for which our algorithm learns how
to generate an effective decision boundary. The main novelty of our proposal relies on exploiting this latter idea to design a
model-based RL approach for solving the OS problem.
Figure 1 summarizes our proposal: A MAB algorithm selects the actions within each local exploration stage, while a RL-

based OS policy decides whether to continue or to end current local exploration. The parameters of the OS policy can be learned
offline using network data. Therefore, our proposal combines strategies from both MAB and RL algorithms.
The rest of the paper is organized as follows. Section 2 overviews related works and highlights our contributions. The main

problem is discussed in Section 3. Our proposal is presented in Section 4 and Section 5 describes two relevant alternatives:
an existing algorithm for structured non-stationary MABs, and a reinforcement learning approach based on policy gradient.
Section 6 provides performance bounds for our proposal. In Section 7 we numerically evaluate and compare our proposal with
the alternatives and finally, Section 8 summarizes the main conclusions of this work and outlines future research lines.

2 RELATEDWORK AND CONTRIBUTION

2.1 Related Work
There is an emerging interest in the use of data-based techniques in network management and optimization24,25,26. In particular24
proposes a framework for data-driven network optimization and points out several potential applications of this framework
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FIGURE 1 Block diagram of our proposal Local Exploration with Optimal Stopping (LEOS).

14,15 16 17 18,19 20,21 22 23 Ours
Controlled Parameters CRE CRE ABS ABS ABS ABS+CRE ABS+CRE ABS+CRE
Non-stationary scenario No No No Yes Yes Yes Yes Yes
Approach Heuristic RL RL Heuristic Optimization Heuristic RL RL
Model free No No No No No No No Yes

TABLE 1 Comparison of related works

including interference management. Our paper develops this idea and proposes a specific novel algorithm applicable to eICIC
configuration.
Previous works have addressed the efficient configuration of eICIC parameters. Some works focused solely on the CRE

bias14,15,16, others focused on the ABS ratio17,18,19,20,21,27, while fewer works22,23,28 aimed at optimizing both parameters
simultaneously, like this work.
Regarding the dynamic nature of the network conditions (e.g. traffic intensity, number of users, user positions), most previous

works7,16,29,8,30,17,14,15,31,20,32,21,33,34 assume static or stationary conditions. While some works consider non-stationary scenar-
ios18,19,22,9,28, their approaches are based on optimization or heuristic algorithms over mathematical models of the network, like
in6,7,8,10,35,36,20,32,21,34,37. For mathematical tractability, even the most complete mathematical network models comprise simpli-
fications and assumptions that may limit their application to real operating networks. For example, the authors in8 simplify their
model by considering only the strongest interference at the receivers. In contrast, our proposal learns directly from the data
gathered from the network and does not require any previous knowledge or assumption, our approach is essentially model-free.
A usual modeling tool is stochastic geometry35,36, which assumes that nodes are deployed according to spatial distributions
like Poisson point processes. Another usual simplification consists of assuming round robin scheduling on the radio interface35,
which is not well suited for HetNet environments.
Reinforcement learning (RL) algorithms have been previously considered for this task, mainly under stationary network

conditions16,17 but also considering non stationary traffic conditions23,37 as in our approach. The main issue with this approach
is the well known curse of dimensionality, i.e. the exponential growth in complexity as the state and action spaces increase. In
order to tackle with the dimensionality and the non-stationarity of the system, our RL approach adopts the two key techniques
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discussed in the introduction: local exploration and sliding window. Our previous work5 was the first one to use a RL approach
for self-optimization of interference management parameters, exploiting the unimodality of the system response. However, that
approach was not designed for a continuous change of the system response which is the central aspect of this new work. Table
1 summarizes the main aspects of the mentioned works with respect to ours.

2.2 Contribution
This paper proposes a novel self-optimization algorithm for interference management in HetNets allowing a centralized entity
to find and track efficient eICIC configurations in an operating LTE-A network, adapting to variable network conditions and
leveraging past experience. The main features of our proposal are:

• We propose a novel algorithm for non-stationary MAB problems based on local exploration combined with an optimal
stopping policy that controls the duration of each local exploration stage.

• We propose an effective strategy for approximating the optimal stopping policy based on some structural properties of the
problem allowing us to cast it into a sequential likelihood ratio test.

• We provide theoretical performance bounds in terms of regret and convergence time.

• We show that, compared to other state-of-the-art alternatives, our proposal performs better under changing network
conditions.

Note that the proposed algorithm, LEOS, can be applied not only for automatic eICIC configuration, but for the self-optimization
of any mechanism whose optimal parameter setting varies over time in a non-stationary way, provided the number of parameters
is sufficiently small, as for eICIC.

3 THE INTERFERENCE COORDINATION PROBLEM

3.1 eICIC Parameters and Performance Metric
The eICIC functionality was introduced by the 3GPP in Release 10 (LTE-A)2 and comprises two mechanisms for controlling
the coexistence of pico and macro eNBs: CRE and ABS.
CRE allows the UEs to associate to a pico eNB when the Reference Signal Received Power (RSRP) from the pico eNB is

lower than the RSRP from the macro eNB. This mechanism prevents the underuse of the radio resources at the pico eNBs due
to their RSRP. To select an eNB to associate with, the UE adds the CRE bias to the pico RSRP but not to the macro RSRP, and
then selects the eNB with maximum (corrected) RSRP. Thus, the higher the CRE bias, the larger the downlink footprint of the
pico eNBs. However, due to the high macro eNB interference, the UEs located at the extended region (CRE region) experience
a poor Signal to Interference and Noise Ratio (SINR).
Hence, the introduction of ABS is motivated by the need to improve the performance of UEs located at the CRE regions.

This eICIC mechanism allows the macro eNBs to mute all the data symbols in some subframes, referred to as Almost Blank
Subframes. In these protected subframes, the SINR of downlink pico transmission is notably improved because the macro
interference is removed. The protected subframes are inserted following a periodic pattern lasting 8 subframes. Therefore, it
is necessary to configure the ratio of ABS subframes over conventional subframes (0∕8,… , 8∕8) within the ABS pattern. As
in38 35, and following the 3GPP recommendation11, we consider that the controlled cluster of cells share the same ABS pattern
(synchronized muting) and the same CRE bias. The cells in the cluster are assumed to have similar traffic patterns, e.g. the
cluster covers a residential area of similar population density.
To evaluate the performance of LTE networks, the 3GPP proposes the 5th percentile throughput39, which is also used in

several previous works on interference coordination6 18 38. We define a throughput sample as the quotient between the size of
a downloaded file and the time required to download it. The 5th percentile throughput is defined as the value below which 5%
of the throughput samples fall. In other words, 95% of the throughput samples are above the 5th percentile value. In a practical
setting, we obtain estimations of this metric from a finite set of throughput samples coming from the users within the controlled
cluster of cells. Each estimation is then a random variable that we refer to as performance sample or performance observation.
Note that this metric characterizes the worst performing UEs, and thus maximizing its expectation pursues max-min fairness
among the UEs in the network.
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3.2 Problem Formulation
Let 
 ∈ Γ and � ∈ Φ refer to the ABS ratio and CRE bias respectively, with Γ = {
1,… 
M1

} and Φ = {�1,…�M2
}, such that


1 < … < 
M1
and �1 < … < �M2

. Any configuration pair a = (
, �) must be selected from the set  = Γ × Φ containing
M = M1M2 elements. Time is divided into time-slots, n = 1, 2,…. The decision maker selects a configuration a ∈  at the
beginning of each time-slot, and obtains the corresponding performance sample Fn(a) at the end of the time-slot, which is an
estimation of the 5th percentile throughput as defined in previous subsection. For each a, the observation Fn(a) is a random
variable whose distribution is initially unknown. We refer to the set of M distributions associated to the M actions, as the
response of the system (n). Note that this response changes over time. In particular, it is assumed that n remains unchanged
during an unknown number of time-slots, until some event causes n to change (e.g. a variation in the number of UEs under
coverage, a small cell being switched off, etc)
Our goal is to devise a strategy or policy that determineswhich configuration a should be selected at each time-slot, considering

the past history of selected configurations and performance samples, with the objective of maximizing the expected performance
over time.
Let us first consider only periods in which the response remains unchanged. In this case, the problem can be formulated as

a stochastic multi-armed bandit problem, characterized byM actions (configuration pairs). Let a∗ = arg max
a∈

E[Fn(a)] be the
best performing action, and let �∗ = E[Fn(a∗)]. Consider a policy � that selects an action �(n) ∈  at each time-slot n. We
define the instantaneous regret rn as the difference between the expected reward (performance) of a∗, and the performance of
the selected action �(n).

rn = �∗ − E[Fn(�(n))]. (1)
And we define the accumulated regret or simply regret R(n) as the difference between the total expected reward obtained by
always selecting a∗, and the expected total reward obtained by � up to time n

R(n) = E
[ n
∑

n′=1
rn′
]

= n�∗ − E
[ n
∑

n′=1
F (�(n′))

]

. (2)

The objective of a bandit algorithm is, in general, to find a policy � minimizing R(n). There is an extensive literature addressing
this problem.
However, conventional bandit algorithms are not applicable in our case because of the variability of n over time. This

variability implies that the optimal action a∗ also changes over time. Our algorithm should be able to adapt to these changes
during the system operation, that is, it must find and track a∗ during future changes in the system response. Note that we assume
that n remains unchanged long enough for an efficient learning algorithm to find a∗ for this specific system response.
This assumption highlights the need to find a∗ within as few samples as possible. To this aim, we leverage the underlying

structure of the expected rewards �a for a ∈  for a given n. Next subsection describes this structure.
To facilitate the reading, Table 2 summarizes the main notation used in the paper.

3.3 Unimodal Structure
In this subsection we describe how the 5th percentile throughput is affected by variations on the ABS ratio and CRE bias,
resulting in the unimodal structure of the set of expected rewards �a for a ∈ . Let us refer to the users in the CRE regions as
CRE UEs, and the users in the macro cells (not covered by any small cell) as macro UEs. In general, in absence of ABS, the
smallest throughput samples come from CRE UEs because of their poor SINR. For a given CRE bias, increasing the ABS ratio
implies two things: less interference at the CRE UEs and fewer spectral resources for the macro UEs. In consequence, using a
larger ABS ratio increases the 5th percentile throughput as long as it is determined by the CRE UEs, who are increasing their
throughput. However, there exists some point at which the 5th percentile throughput starts to be determined by the macro UEs,
who receive fewer frame resources as the ABS ratio increases. Therefore, beyond this ratio, the 5th percentile throughput starts
to decay, because of the reduced throughput of some macro users.
A similar reasoning can be made when considering a given ABS ratio. As the CRE bias increases, more macro UEs become

CRE UEs. Therefore, using a larger CRE bias increases the 5th percentile throughput as long as this implies that there are more
available frame resources per macro UE and per CRE UE (i.e. as the resources become better balanced). However, increasing
the CRE bias beyond the value that attains the optimal resource allocation can only deteriorate the performance since increasing
the number of CRE UEs will always imply fewer resources for them.
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Notation Description
 Set of actions (eICIC configuration pairs) available
M Total number of actions (||)
Fn(a) Random performance observation at a ∈ 
�a Expected performance of action a: �a = E[Fn(a)] at a given stage n
� Standard deviation of Fn(a) at a given stage n
�̂a Estimated performance of action a
 ̂a Upper bound estimate of the action a performance
 Exploration regions of LEOS
j Set of actions in exploration region j
m Number of actions of each exploration region (|j|)

a∗j , âj , aj Best local action, estimated best local action, and central action of region j
on Past observations (action, performance) at time-slot n
{Yk} DTMC modeling the exploration regions visited by LESH
pj,j′ Transition probabilities for {Yk}
{Xk} Worst case DTMC for obtaining performance bounds on {Yk}
�, � Steady state probability vectors for {Yk} and {Xk} respectively
Δa Average performance gap between action a and the best performing action, a∗

rn Instantaneous regret of the n-th sample
R(n) Expected accumulated regret up to sample n
N Sample budget for each local exploration
E[t] Expected length of an exploration stage
E[tj] Expected length of an exploration stage inj
pe Upper bound for the estimation error probability

TABLE 2 Notation

In order to illustrate the described behavior, Figure 2 shows the system responses, in terms of 5th percentile throughput,
of a LTE-A network under different conditions (traffic intensity and number of active small cells). The network was simulated
according to the 3GPP guidelines (described in Section 7). The described effects were previously reported and exploited in other
works like35 and13.
To formalize the above property in our model, we can construct an undirected graph , using  as the set of vertices, and

defining its set of edges  as follows: For each action a = (
i, �i′) ∈ , the set  contains up to 8 edges1 pairing a with each
action (
, �) such that 
 ∈ {
i−1, 
i, 
i+1}, and � ∈ {�i′−1, �i′ , �i′+1}. We say that two vertices (actions) a, a′ are neighbors if
(a, a′) ∈  . The distance between two actions d(a, a′) is defined as the number of edges of the shortest path between a and a′ in
.
Unimodality in graphs expresses the fact that when the optimal action is a∗, then for all a ∈ , there exists a path in  from a

to a∗ along which the expected reward is strictly increasing. The consequence of this definition is that there are no local maxima
except at a∗. We have defined  for two parameters 
 and � (two-dimensional case). If we only consider the configuration of
one parameter, say 
 , then  = Γ, and unimodality implies that there exists some 
i∗ ∈  such that �1 <… < �i∗−1 < �i∗ and
�i∗ > �i∗+1… > �M1

, where �i denotes the expected reward of 
i (one-dimensional case).

4 LOCAL EXPLORATIONWITH OPTIMAL STOPING

In this section we describe our proposal, Local Exploration with Optimal Stoping (LEOS), in detail. The main idea of LEOS is to
obtain samples from a subset of neighboring actions (Local Exploration, LE), until the obtained observations provide sufficient
evidence that moving to another subset would provide a better expected performance.

1The number of edges for a given a is fewer than 8 if a contains any of the minimum or maximum values 
 or �.
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FIGURE2 Contour line representations of the system response of a simulated LTE-A network under different conditions (traffic
intensity and number of active small cells). The optimal configurations are identified with a ∗ symbol. In all cases we observe
unimodal structure. The performance associated to each configuration is the estimated 5th percentile throughput.

4.1 Local Exploration
The Local Exploration algorithm requires the definition of S subsets of , referred to as local exploration regions or simply
exploration regions. Each exploration region j for j ∈  = {1,… , S}, contains m actions, including a central action aj , and
its m − 1 neighbors in . Given one of these neighbors, aj′ , we say that its corresponding regionj′ is adjacent toj . We will
consider exploration regions comprising 3 values of each configurable parameters, thus m = 3 × 3.
We define, the best local action a∗j of j , as the action whose expected reward is the highest among the m actions in j ,

and the exploration stage, as a sequence of up toN consecutive performance samples from a given exploration regionj . The
objective of an exploration stage is to find a∗j . We refer toN as the sample budget for each stage.
The LE algorithm operates in combination with other two algorithms: 1) A bandit-type algorithm (generically referred to

as SelectAction), for deciding which action to select from j , and 2) the Optimal Stopping (OS) algorithm, explained later in
this section, for deciding when to finish current exploration stage. Both SelectAction and OS make their respective decisions
according to the recent history of actions and observations. The LE algorithm operates as follows:

1. At every time-slot, SelectAction determines which action a ∈ j should be selected. The LE algorithm obtains a
performance observation Fn(a), and updates the observation history with pair (a, Fn(a)).

2. Given the observation history, the OS algorithm decides if current exploration stage should continue or not.

3. If current exploration stage must end, then the LE algorithm makes a transition to the adjacent region j′ whose central
action aj′ is equal to the estimated best local action âj , and starts a new exploration stage inj′ .

Note that the self-transition j → j is possible. It corresponds to the case that the central action of Aj is identified as the
optimal action. Figure 3 illustrates one transition of the LE algorithm in the two-dimensional case.

4.2 Action Selection Algorithm
We use an upper confidence bound (UCB) strategy in SelectAction. At each exploration region j , UCB needs to estimate, for
each a ∈ j , the average action performance �̂a, and an upper bound on this performance  ̂a, at some fixed confidence level. In
particular, we will consider the bounds based on Hoeffding’s inequality40 approximating the distribution of Fn(a) by a Gaussian
distribution with standard deviation � (which can be a worst-case estimation based on past experience). The resulting expression
for the upper bound estimate is given by  ̂a =

√

6�2logt
na

, where na denotes the number of samples taken from action a, and t is
the total number of samples taken fromj . The action selected at each n is given by �(n) ∈ arg max

a∈j

(�̂a +  ̂a).



8 JUAN J. ALCARAZ ET AL

FIGURE 3 Operation example of the Local Exploration algorithm for ABS ratio and CRE bias configurations (two-dimensional
case), using an exploration region of m = 9 actions.

To cope with the variability in the system response n over time, we will adopt a usual strategy in bandit algorithms consisting
of limiting the amount of past observations upon which the algorithm bases its decisions41,42. In our case, the observation history
(containing action-observation pairs) is limited to the pastN time-slots:

on =
{

(�(n −N), Fn(�(n −N))),… , (�(n), Fn(�(n)))
}

(3)

That is, �̂a and  ̂a estimates are based on on, which is updated following a sliding window procedure so that on always contains
the N most recent action-observation pairs. Note that, even though on may contain samples from any a ∈ , only the samples
from current exploration region are relevant.

4.3 Optimal Stopping
Optimal stopping problems are a subclass of Markov decision processes (MDPs) whose objective is to decide, at each stage, if
an ongoing process should continue or terminate. In our case, the ongoing process is the current local exploration, the stages
of the MDP are the arrival times of the action-sample pairs, n = 1, 2,…, and the state of the MDP is defined by the central
action aj of the current exploration region j , and on. Note that the dimension of the state increases with each action-sample
pair, which makes the problem especially challenging. At each n, the decision maker must select between two actions: u = 0 to
continue sampling from j , or u = 1 to end current exploration stage. When the stopping decision u = 1 is made, the current
local exploration ends, which implies that the MDP makes a transition to a termination state determined by the estimated best
local action âj . Immediately after the termination of an MDP, a new exploration stage starts, which initiates a new MDP.
Let us define the optimal cost-to-go associated to a given state aj at time-slot n, as the expected accumulated regret when

starting at the exploration region whose central action is aj , until reaching the optimal action a∗ for the first time:

Jn(aj) = min
�∈Φ

E ,�

[ n+T
∑

n′=n+1
rn′
|

|

|

|

aj , on

]

(4)

where Φ denotes the set of possible policies (within the LE framework2), and T is a random variable defined as the number
of samples required to reach a∗ for the first time (convergence time). The subscripts in the expectation operator denote that the
expectation is taken with respect to the stochastic process resulting by the policy � operating on a system response  .

2Note that LE (in particular the action selection algorithm) specifies which action should be selected during the ongoing exploration stage, and LE also determines
the next exploration region when a transition must be made. Thus, Φ contains the possible policies that the OS decisions can generate within the LE operation framework.
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The optimal stopping decision should compare the cost-to-go when remaining at current state aj , Jn(aj), with the termination
cost, which is equal to the cost-to-go of a new sampling process starting at the estimated best local action âj , Jn(âj). This can
be expressed as

u = arg min
u∈{0,1}

[

(1 − u)Jn(aj) + uJn(âj)
]

(5)

Let en = P (âj ≠ a∗j |on) denote probability that current estimation âj is not the best local action a∗j , i.e. en is the estimation
error probability. Our solution method requires expressing the right hand side of (5) as a function of en. Note that, if âj = a∗j ,
then Jn(âj) = Jn(a∗j ). If âj ≠ a∗j , the expected cost-to-go at âj is given by E[Jn(âj)|âj ≠ a∗j , on]. Given these definitions, the
optimal stopping decision is the one that solves, at each n, the following equation

u = arg min
u∈{0,1}

[

(1 − u)Jn(aj) + u
(

(1 − en)Jn(a∗j ) + enE[Jn(âj)|âj ≠ a∗j , on]
)

]

(6)

If all the terms in (6) were known, finding an optimal stopping policy would be immediate. Unfortunately, this is not the case,
and it is necessary to resort to approximate methods.
Our approach exploits the threshold structure of the optimal policy with respect to en. By rearranging the terms in (6), we

obtain
u = arg min

u∈{0,1}

[

Jn(aj) + u
[

en
(

E[Jn(âj)|âj ≠ a∗j , on] − Jn(a
∗
j )
)

− (Jn(aj) − Jn(a∗j ))
]

]

(7)

from where it follows that the optimal decision is to select u = 1 when

en
(

E[Jn(âj)|âj ≠ a∗j , on] − Jn(a
∗
j )
)

< Jn(aj) − Jn(a∗j ) (8)

and u = 0 otherwise. Note that the inequality in (8) compares the expected performance loss of moving to a non optimal state
âj , with the performance loss of remaining at aj . If the former is smaller than the latter, then it is optimal to update the local
exploration region (i.e. to make a stopping decision).
Defining


n =
Jn(aj) − Jn(a∗j )

E[Jn(âj)|âj ≠ a∗j , on] − Jn(a
∗
j )
, (9)

the optimal policy for (6) can be expressed as
u = 1, if en < 
n
u = 0, otherwise (10)

In words, if the estimation error is below certain threshold, then a stopping decision should be made. Therefore, although en
and 
n are both unknown quantities, (10) indicates that an efficient strategy should be aware of how accurate the estimation âj
is, and use past observations to adjust the accuracy level required to make a transition.

4.4 Sequential Likelihood Ratio Test
If 
n were known, the optimal stopping decision would consist of assessing whether the estimation error probability en is below
the threshold 
n (10). This assessment can be done indirectly by means of a likelihood ratio test (LRT), as we explain in this
subsection. In our case, the LRT aims at rejecting (or accepting) the null hypothesis H0 ≡ âj ≠ a∗j

43. The idea is to use on to
estimate the likelihood ratio Zn for H0. The likelihood ratio is defined as the quotient between the probability of observing on
conditioned on H0 not being true, and the probability of observing on conditioned of H0 being true. If Zn surpasses a critical
value �(
n), thenH0 is rejected. By definition, the false rejection probability of the LRT is the estimation error probability, i.e.
P (Zn > �(
n)|H0) = en. The larger the critical value �(
n), the smaller the false rejection probability. Therefore the threshold
condition in (10) could be replaced byZn > �(
n). The diagram in Figure 4 illustrates the overall decision procedure presented
in this section.
The ratio Zn can be computed with the method explained in43, consisting of two steps: First, we obtain m − 1 pairwise

likelihood ratios Zn(âj , a) for a ∈ j ⧵ {âj}, each of one aimed at rejecting (or accepting) the hypothesis “�âj < �a”. The
expression is given by

Zn(âj , a) = nâjDKL

(

�̂âj ,
nâj �̂âj + na�̂a
nâj + na

)

+ naDKL

(

�̂a,
nâj �̂âj + na�̂a
nâj + na

)

(11)



10 JUAN J. ALCARAZ ET AL

FIGURE 4 Diagram of the decision procedure used by LEOS withZn > ��(on) approximating the optimal threshold condition
en < 
n.

where DKL(�, �′) denotes the Kullback-Liebler divergence between two distributions of the same type, having means � and �′
respectively. Second, Zn is given by

Zn = min
a∈j⧵{âj}

Zn(âj , a) (12)

In summary, if the LTR rejects “�âj < �a” for all actions a in j different from âj , this means that it cannot assure that any
of these actions has better performance than âj . As a consequence, the null hypothesis H0 (âj ≠ a∗j ) is rejected, implying that
there is sufficient confidence on âj being the best local arm.
Now we only need to tackle with one unknown parameter �(
n), which depends on 
n and thus on the unknown cost-to-go

function Jn. Even if Jn could be estimated from the given observations on (e.g. by means of a reinforcement learning algorithm),
the exact expression for � is unknown. Therefore, we propose to approximate � by an estimator ��(on), characterized by a
parameter vector �. This vector can be fitted by means of a stochastic approximation algorithm. The objective is to find values
of � that can approximately solve (4) using the following parametrized policy:

u = 1, if Zn > ��(on)
u = 0, otherwise (13)

In other words, our scheme consists of learning the best possible H0 rejection boundary. Next section discusses our offline
learning strategy for obtaining �. The overall online learning proposal, LEOS, is summarized in Algorithm 1.

4.5 Rejection Boundary Estimation
Let �� denote the action selection policy when the OS policy in (13) is used, and let J0(aj0 ;�) denote the cost-to-go from an
initial state aj0 associated to ��: J0(aj0 ;�) = EF ,��

[

∑T
n′=0 rn′ |aj0

]

. By taking the expected value of J0(aj0 ;�) over the distribution
of initial states aj0 ∈ , we can define J0(�) = E

[

J0(aj0 ;�)
]

. The estimation of the optimal rejection boundary is equivalent
to solving the stochastic optimization problem min

�
J0(�), which can be addressed by means of a stochastic approximation (SA)

algorithm44, involving the following steps:

1. Initialize �

2. Obtain an estimated gradient ∇̂J0(�) of J0 at �.

3. Determine a step size �

4. Set � = � − �∇̂J0(�)

The SA algorithm iterates over steps 2-4 until a stopping criterion is met. In our implementation, we used a central differ-
ence (Kiefer-Wolfowitz) estimator44 of the gradient, ∇̂J0(�). The performance samples were generated from limited previous
experience using a sample augmentation strategy similar to previous works5.
We still need to determine a model for the estimator ��. For this, it is useful to characterize the structure of the critical value

�(
n). From (9), it is clear that, if Jn(aj) > E[Jn(âj)|âj ≠ a∗j , on], then 
n > 1. Given that Zn > 043, this implies that �(
n) < 0.
This condition is intuitive: if moving to a non-optimal âj implies a smaller cost-to-go than remaining at aj , then the stopping
condition must be fulfilled, i.e. Zn > �(
n) must hold. For this to be true, no matter what is the (positive) value of Zn, the
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Algorithm 1 Local Exploration with Optimal Stopping
1: Input: , aj0 ,N , ��, SelectAction
2: n = 0, on = ∅, Zn = −∞
3: for k = 0, 1, 2,… do
4: t = 1, continue = true,
5: jk ≡ exploration region with ajk as central action
6: while continue do
7: n = n + 1
8: obtain action a←SelectAction(jk ,on−1)
9: obtain observation Fn(a)
10: if on−1 containsN observations then
11: remove oldest (a′, Fn(a′)) from on−1
12: update na′ and �̂a′
13: end if
14: on = {on−1, (a, Fn(a))}
15: update na and �̂a
16: âj = max

a∈j
�̂a

17: if na > 0 for all a ∈ jk then
18: update Zn using (11) and (12)
19: end if
20: if (Zn > ��(on)) or (t = N) then
21: continue = false
22: ajk+1 = âj
23: else
24: t = t + 1
25: end if
26: end while
27: end for

boundary function �(
n) must be negative. By reasoning similarly for the case Jn(aj) < E[Jn(âj)|âj ≠ a∗j , on] we obtain a basic
structural result for the rejection boundary:

�(
n) < 0, if E[Jn(âj)|âj ≠ a∗j , on] − Jn(aj) < 0
�(
n) > 0, if E[Jn(âj)|âj ≠ a∗j , on] − Jn(aj) > 0

(14)

From the above condition it can be checked that, at the state associated to the highest cost, the critical value �(
n) is negative.
In consequence, it is convenient to select a model for �� satisfying the above properties, e.g. being monotonically increasing

with the estimated performance, �̂âj , starting in negative values at smaller values, and becoming positive at larger ones. The
policy resulting from this structure follows a reasonable cautionary principle: the higher the attained performance, the greater
the estimation accuracy required to make a transition.
We have selected a model for �� requiring a relatively small dimension for �. Since the attainable performance is the main

decision criteria, the input of the model is the estimated performance of the best local action �̂âj , which is obtained from the
observation vector on. The output is obtained by means of a weighted sigmoid function, as follows

��(on) = ��(�̂âj ) = �0 +
�1

1 + exp(�3 + �4�̂âj )
. (15)

The initialization of the parameter vector � = (�0, �1, �2, �3) should comply the desired structural features.
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5 ALTERNATIVES: SW-UCB-U AND SW-RL

This section presents two alternative approaches that will be used later in the benchmark evaluations of Section 7. One is an
existing bandit algorithm for unimodal, time-changing responses, and the other is a reinforcement learning algorithm. Both of
them incorporate three elements previously introduced in LEOS: 1) a sliding window for storing past observations; 2) upper
bound estimates on the expected action performances; and 3) the concept of exploration regions in order to efficiently exploit
the underlying structure of the rewards.

5.1 SW-UCB-U
The proposal in42 and45 for MAB problems in time-chaning environments uses the following principles: At each time-slot, the
algorithm identifies the action with the best empirical performance in on (the leader). The neighborhood of the leader is the
set containing the leader and actions surrounding the leader. This set is conceptually equivalent to the exploration region in our
approach. For each action in the neighborhood, an index is computed. Two index options are considered in42, the Kullback-
Leibler index and the UCB index. The first option is limited to systems where rewards distributions are within one-parameter
exponential families, and is computational more demanding because computing each index requires solving an optimization
problem. Therefore, we consider the second option, referred to as SW-UCB-U, which allows us to compare all the algorithms
under equal conditions. The action selected at each n is determined as follows:

• Select the leader l if nl−1
m

is an integer, where nl is the number of times that the leader is present in on.

• Otherwise, select the action with the largest index within the leader’s neighborhood.

5.2 SW-RL
As a second benchmark, we consider a conventional model-free RL approach, i.e. one that does not consider the structural
aspects exploited by LEOS. At each time-slot n, the RL agent must decide which action to select from the current exploration
region, or if a transition should be made to an adjacent region with the best estimated action. The RL algorithm must therefore
solve problem (4) without the restriction of using UCB for action selection.
The state space generated by all possible on vectors has 2N dimensions, N of which have continuous domains. Tabular RL

approaches are therefore unfeasible for this problem. The control space, in contrast, is relatively small, comprising only m + 1
actions: the m actions in current exploration region n and the transition decision. The control is denoted by u, and is u = a
if action a ∈ n is selected, and u = 0 if a transition must be made. The control space is denoted by  . Given this setting,
policy gradient46 is a suitable approach. This technique implies the parametrization of the preferences for each state action pair
ℎ(on, u,�), where � is a parameter vector. Actions with the highest preferences, are given the highest probabilities of being
selected. The softmax distribution is a usual choice for obtaining randomized policies: P (u|on,�) = eℎ(on,u,�)(

∑

u∈ eℎ(on,u
′,�))−1.

The preference functions are obtained from feature vectors x(on, u) by ℎ(on, u,�) = �Tx(on, u). In our setting the feature
vectors x(on, u) comprise the same information used by LEOS and SW-UCB-U: �̂a and  ̂a for the actions inn. Therefore, for
u = a ∈ n we have x(on, a) = (1{na=0}, �̂a,  ̂a, 0)

T where 1{na=0} is an indicator function that equals 1 if a has not been selected
during the last N time-slots, and 0 otherwise. For u = 0, the feature vector is x(on, u)T = (0, 0, 0, 1). To obtain an effective
policy, the parameter vector � determining this policy must be learned offline (as in LEOS) by a policy gradient algorithm. For
our numerical experiments we have used the REINFORCE algorithm46.

6 PERFORMANCE ANALYSIS

This section presents performance bounds for LEOS in terms of regret and expected convergence time for a given system
response n. The analysis relies on a Markov model of the algorithm comprising two worst-case assumptions, the first one
regarding the location of a∗, and the second one related to the transition probabilities of the Markov chain. We show that, in
expectation, LEOS approaches a∗ at least as fast as the worst-case model. Let us start by defining the Markov model without
these worst-case assumption.
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6.1 Markov Model for LEOS
Let Yk be the index of the exploration region visited by LEOS at the k-th exploration stage. Considering Yk = j, LEOS makes
a transition to the exploration region j′ (i.e. Yk+1 = j′) if the empirical best action is aj′ and any of the following disjoint
events take place: either t < N and Zn > ��(on), or t = N . These events are determined by the observation vector on, which
is a random variable that depends only on the current exploration region, Yk . This property allows us to model the random
sequence {Yk} = Y0, Y1,… as a Discrete Time Markov Chain (DTMC) with state space  , and the transition probabilities
pj,j′ = P (Yk+1 = j′|Yk = j), for j and j′ in  .
In the one-dimensional case, each exploration region j can have, at most, two neighboring regions: j−1, if j > 1, and

j+1, if j < S. Therefore transitions in {Yk} can be made only to neighboring states or leave the state unchanged, i.e. {Yk} is a
birth-death process47. The steady state probabilities of {Yk} are defined as �̄j = P (Yk = j) for j ∈  .
The duration, in time-slots, of an exploration stage is a random variable in [m,N], whose distribution depends on the current

exploration region j and the OS policy. Let E[tj] denote the expected amount of time-slots spent by LEOS in an exploration
stage at j (i.e., when Yk = j). The average duration of an exploration stage is given by E[t] =

∑

j∈ �̄iE[tj].

6.2 Worst Case Model
Let us first define the worst case setting as an action arrangement in which there is one action a0 ∈  whose distance to a∗
equals the diameter of . In the one dimensional case, this is equivalent to assuming a∗ = 
1 (or a∗ = �1). By unimodality,
the configuration values (actions) 
1, 
2, …, 
M are in strictly decreasing performance order, i.e. �1 > �2 > … > �M . The
exploration areas are numbered in the same order, thus 1 denotes the area containing a∗, and S is the area with the worst
performing actions. From now on, {Yk}will represent the sequence of visited areas in a worst case setting for the one-dimensional
case. The extension to the two-dimensional case is straightforward and omitted for sake of notation clarity.
The worst case model, comprises the following features: 1) the actions are arranged according to the worst case setting, 2)

the estimation error probability is set to an upper bound pe ≥ en, and 3) estimation errors always imply making a transition to
the exploration area associated to the worst performing action. The sequence of areas visited by the worst case model follows a
DTMC denoted by {Xk}, characterized by the following transition probabilities:

P (Xk = j + 1|Xk−1 = j) = pe for 1 ≤ j ≤ S − 1
P (Xk = j − 1|Xk−1 = j) = 1 − pe for 2 ≤ j ≤ S
P (Xk = S|Xk−1 = S) = pe
P (Xk = 1|Xk−1 = 1) = 1 − pe

(16)

It is straightforward to check that the above probabilities are bounds for the transition probabilities of {Yk}, i.e., pj,j−1 ≥ (1−pe)
for S ≥ j > 1, pj,j + pj,j+1 ≤ pe for S > j > 1, p1,1 ≥ (1 − pe), and pS,S ≤ pe. These inequalities allow us to use {Xk} as a
worst case model of {Yk}.
The steady-state probabilities �1,… , �S of {Xk} are the unique solution to the balance equations:

�1 = (1 − pe)�1 + (1 − pe)�2
�j = pe�j−1 + (1 − pe)�j+1, for 2 ≤ j ≤ S − 1
�S = pe�S−1 + pe�S

(17)

and the normalization equation
∑S
j=1 �j = 1. Defining � = pe

1−pe
the balance equations (17) can be reduced to the relation

�j = �j−1�1 for j = 1,… , S, which in combination with the normalization condition gives

�1 =
( S
∑

j=1
�j−1

)−1

= 1 − �
1 − �S

(18)

The following result shows that the above probability provides a lower bound to the long-term fraction of time (exploration
stages) that {Yk} spends in region 1. This bound is related toM andm, since these parameters determineS byS =

⌊

2(M−m+1)
m−1

⌋

+
1, which can be easily derived from the definition of exploration regions for the one-dimensional case.
Lemma 1. Let �j and �j , for j ∈  be the steady state probabilities of {Yk} and {Xk} respectively. The following inequality

holds: �1 ≥ �1.
Proof. See Appendix A.1.
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6.3 Performance Bounds
This subsection presents upper and lower bounds on the main performance metrics of our proposal. For notation clarity let us
define Δa = �∗ − �a as the expected difference between the performances of the best action and action a ∈ . Next result
characterizes the long-term average regret per sample.
Theorem 1. The average regret per sample of the LEOS algorithm in the worst case setting has the following upper bound

lim
n→∞

R(n)
n

≤ (1 − �1C)
∑

a∈S

Δa
m
+ �1C

∑

a∈1

Δa
m

(19)

where C = E[t1]
E[t]

. The average regret per sample has the following lower bound

lim
n→∞

R(n)
n

≥ 1
N

∑

a∈1

Δa (20)

Proof. See Appendix A.2.
It can be checked that the upper bound diminishes for higher values of �1, attaining its minimum for �1 = 1, which corresponds

to a perfect error estimation, pe = 0 (in fact, it suffices to have perfect estimation at 1). Similarly, a larger ratio E[t1]
E[t]

is also
desirable, which is consistent with our structural description of the OS policy. Note that, to some extent, the sample budget N
influences the identification error, since allowing more observations per exploration stage, results in higher estimation accuracy.
The reason why the lower bound is greater than 0 is because, even when the algorithm reaches the region of the best action,

all local actions within this region must be resampled at least once everyN time-slots. This feature is necessary for adapting to
changes in the system response n, allowing the algorithm to detect when the best action is no longer in the current region and
should be sought in a different one. Therefore, it is the cost of the minimal level of exploration required to track the best action
and operate in non-stationary environments. The numerical results in the Section 7 confirm that, when n does not change with
n, R(n)∕n approaches 0 forN →∞, but not when n changes with n.
An important feature of the algorithm is its responsiveness, i.e. its ability to reach the local region containing the best action

from any initial location. The following theorem provides an upper bound on the expected time to reach this region.
Theorem 2 (bound on the expected convergence time). Let T denote the (random) amount of samples required by the LE

algorithm to reach1 for the first time. In the worst case setting, the following inequality holds

E [T ] ≤ N
(1 − pe)

S−2
∑

j=1

1 − �j+1
1 − �

. (21)

Proof. See Appendix A.3.
Finding a lower bound for E[T ] is straightforward. Assuming X0 = S, it takes at least (S − 1) transitions to reach region 1,

therefore E [T ] ≥ m(S − 1). Obviously, these bounds indicate that the larger the state space (S), the slower the convergence.
Additionally, the upper bound suggests that increasing the sample budget N might also slow down convergence. These claims
have been validated by our simulation experiments.

7 NUMERICAL RESULTS

7.1 Simulation Methodology
We have obtained a complete system responsen for a cluster of LTE eNBs, following the 3GPP guidelines for LTE performance
evaluation39. The simulated network layout consists of a hexagonal grid of 19 three-sectorial macro eNBs (57 macro cells), and
12 pico cells overlapping each macro cell. The simulations are executed for the inner 21 macro cells, while the remaining 36
outer macro cells emulate the interference of a larger network. The total interference at each terminal is the aggregate of the
signals transmitted from all nearby base stations, i.e. the four closest macro eNBs and all the picos within the same macro cell.
Our simulator generates user traffic following the 3GPP FTP traffic model39. According to this model, each arrival implies

the download of one file of 0.5 Mbytes, at a random location within the macro cell. In particular, the arrival falls within the
coverage area of a pico cell (with probability 2∕3), or uniformly over the whole macro cell (with probability 1∕3). The overall
arrival rate for each macro cell is � = 37.5 files per second. Each downloaded file results in one user throughput sample.
The sizes of the ABS ratio and CRE bias configuration sets are |Γ| = 7 and |Φ| = 10 respectively, resulting in M = 70

total actions. For each configuration a ∈ , the simulator generates 40 independent samples of Fn(a) to obtain estimations of
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Network layout 19 macro eNBs, 57 directional macro cells, 500 m Inter-Site Distance, 12 pico eNBs per sector
System Bandwidth 10 MHz
Frame duration Subframe 1 ms, Protected-subframe pattern 8 ms, Frame 10 ms
Transmit power Macro cell 46 dBm, pico cell 30 dBm

Antenna Pattern (macro sector) AH (�) = −min
[

12
( �
�3dB

)2 , Am
]

, �3dB = 70 degrees Am = 25 dB

Antenna Pattern (pico) Omnidirectional
Antenna gains macro: 14 dBi; micro: 5 dBi

Macro to UE path loss 128.1 + 37.6 · log10 (R[Km]) where R is the macro eNB to UE distance
Pico to UE path loss 149.7 + 36.7 · log10 (R[Km]) where R is the pico cell to UE distance

Shadow fading Lognormal distribution with 10 dB standard deviation
Thermal Noise -174 dBm/Hz

Scheduling Algorithm Proportional Fair (PF)
Traffic Model File Transfer Protocol (FTP)

File size 0.5 Mbytes
� [UEs/s] (Offered traffic load) [Mbps]) 37.5 UEs/s (150 Mbps)

Minimum distances Macro - pico: 70 m; Macro - UE: 35 m; Pico - pico: 40 m; Pico - UE: 10 m

TABLE 3 Simulation Parameters

the mean �̂a and the variance �̂2a of Fn(a). Each sample of Fn(a) is the 5th percentile of 1000 user throughput samples. In our
scenario of 21 macro cells, each one generating an average of 37.5 throughput samples per second, this means that the system
obtains one Fn(a) sample every 1.27 seconds. Note that, in a real deployment, this sampling rate could be made smaller and
synchronous by sampling at the frame level, instead of the application level. Note also the small signalling overhead introduced.
Assuming that a throughput sample is encoded in 16 bits, gathering the throughput data in the central controller would only
require an additional bandwidth of 37.5 × 21 × 16 = 12.6 Kbit/s.
Following the procedure in5 we generate new Fn(a) samples at each a by generating Gaussian random variables characterized

by �̂a and �̂2a . Both LEOS and SW-RL can be trained offline using this sample augmentation method.
The initial configuration at every training episode was themost distant action with respect to a∗. The comparative evaluation of

the algorithms was done under non-stationary conditions, which were emulated by slightly changing the system response every
p time-slots. We refer to p as the change period, and f = 1∕p is the change rate. Each change implies a random displacement
of the best action a∗ to one of its adjacent regions, preserving the unimodal structure of the system response.

7.2 LEOS Configuration
The theoretical results for LEOS anticipated that the configuration of the sample budgetN must face a tradeoff between regret
and convergence time in stationary conditions. We have assessed this tradeoff numerically, by measuring the regret per sample
R(n)∕n and the expected convergence time E[T ] for different values of N for a given n. Each performance measurement has
been obtained by averaging the results of 500 simulation runs of 20000 samples each. The results, shown in Figure 5 , confirm
that larger values of N provide higher estimation accuracy, yielding smaller values of the long-term regret, but resulting in
longer exploration stages and thus slower convergence.
In time changing conditions, minimizing the regret requires a sufficiently accurate estimation, but also adaptability to changes

in n. If the location of a∗ changes, the algorithm should be able to quickly attain this new location, for which it needs a
sufficiently small E[T ]. This suggests that there should be an optimal N value for each change rate f , attaining the optimal
balance between estimation accuracy and responsiveness. Figure 6 shows the average regret per sample versus N , for three
different change periods, 200, 350 and 500. The best configuration of N in LEOS was N = p = 1∕f for all the change rates
used in this section.
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FIGURE 5 Average regret per sample R(n)∕n and expected convergence time E[T ] (in time-slots) of LEOS in a stationary
environment versus the sample budgetN .
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FIGURE 6 Average regret per sample of LEOS versusN under 3 different change periods for a time-varying n.

7.3 Benchmark Evaluation
In this subsection we compare our proposed algorithm with the alternative approaches SW-UCB-U and SW-RL. Figure 7
shows the average regret per sample R(n)∕n over time for each algorithm under stationary conditions (n remains unchanged
during every simulation run). Each curve was obtained by averaging 100 independent simulation runs. This figure also includes
the results of a bandit algorithm (UCB) operating on the whole action space . Compared to the structure-aware algorithms,
the regret of a conventional bandit approach is more than one order of magnitude higher, which highlights the importance of
exploiting the underlying structure of the rewards.
Figure 8 shows how R(n)∕n evolves over time for change periods p = 500 and p = 200. Each algorithm is configured at its

best performing window size, which isN = p for both LEOS and SW-RL, andN = 2p for SW-UCB-U. We can see that LEOS
obtains the smallestR(n)∕n both in the early stages and in the long term, and more importantly, we observe that the performance
attained by LEOS when n changes over time, is comparatively better than the alternatives. In order to assess how the changing
rate influences the performance, we have estimated the average regret at the end of 100 independent runs of 20000 samples
each one, for change periods ranging from 100 to 1000 time-steps. Figure 9 summarizes the results obtained, showing that for
higher change rates (smaller change periods), the performance gap of LEOS is higher.
The histograms of the selection frequency of each action, provide further insight on the algorithm performance. Figure 10

shows the histograms for a change period of 200 time-slots, with the actions arranged in the x-axes by decreasing performance
order. Because of the variability of n, the best action is not the one selected most frequently by any algorithm (in contrast to
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FIGURE 7 Average regret per sampleR(n)∕n versus n for UCB, LEOS, SW-UCB-U, and SW-RL in a stationary environment.
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FIGURE 8 Average regret per sampleR(n)∕n versus n for LEOS, SW-UCB-U, and SW-RL for change rates 1∕200 and 1∕500.

the behavior under stationary conditions). The sampling frequency in LEOS is more concentrated in lower numbered actions
compared to the other algorithms. The superior tracking capabilities of LEOS are related to the fact that, in contrast to SW-
UCB-U, it leverages past experience when making transition decisions thanks to the offline learning phase. Summarizing, in our
experiments under time-varying conditions, LEOS obtained a long-term regret per sample that was, in average, 22% lower than
SW-UCB-U, and 48% lower than SW-RL. The performance gap between LEOS and SW-UCB-U is proportional to the change
rate of n, becoming larger at faster rates.

8 CONCLUSIONS

This paper presented a novel online reinforcement learning algorithm, LEOS, for finding efficient configurations of the inter-
ference coordination parameters in LTE HetNets. The key idea of our proposal is to consider each local exploration stage as an
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FIGURE 10 Histograms with the estimated action selection frequency for p = 200. The actions are ordered by decreasing
performance.

optimal stopping (OS) problem aimed at minimizing the long-term regret by making decisions on whether to continue or to end
current stage. We show that solving the OS problem is equivalent to adjusting the estimation accuracy of a sequential likelihood
ratio test (LRT) aimed at identifying the best local action. Consequently, our solution strategy is based on learning the parame-
ters of an effective decision boundary for the ongoing LRT. We consider two alternatives: a bandit algorithm for non-stationary
environments with unimodal structre (SW-UCB-U) and a policy gradient RL algorithm (SW-RL). Our numerical results show
that, in a time-varying scenario, LEOS clearly outperforms both SW-UCB-U and SW-RL within a wide range of change rates.
Our proposal is flexible enough to integrate future extensions and enhancements. We would like to discuss two potential

improvements. First, to incorporate additional information into the decision process. For example, the agent could observe the
user traffic load in the system and map it into a predefined set of load levels. The current load level can be used as a context,
allowing the learning process to be conducted in a contextual bandit way. In this setting, each context would be associated to its
own instance of the LEOS agent (with its own history, local exploration region, etc). Second, to adjust the CRE bias parameter
of each small cell by considering the CRE bias provided by LEOS as a reference value to which each small cell would add its
own offset. Each station would learn which offset is better for each CRE reference value by solving a contextual bandit problem.
Note that the non-stationarity introduced by the distributed learning of the offsets would not be a problem for the centralized
learning process, since LEOS is designed specifically for operating under time varying conditions.
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APPENDIX

A PROOFS

A.1 Proof of Lemma 1
Because {Yk} is a birth death process, the local balance equations hold (�jpj,j+1 = �j+1pj+1,j for j = 1,… , S, which leads to
�j = �j�1, for j = 2,… , S, where �j =

∏j
j′=2

pj′−1,j′
pj′ ,j′−1

. Similarly, for {Xk} we have �j = �j−1�1, where � =
pe

(1−pe)
. Using the

normalization condition we have

�1 =
(

1 +
∑S
j=2 �j

)−1

�1 =
(

1 +
∑S
j=2 �

j−1
)−1 (A1)

Because the transition probabilities of {Xk} are bounds to those of {Xk}, we have that
∏j

j′=2 pj′−1,j′ ≤ pj−1e , and
∏j

j′=2 pj′,j′−1 ≥
(1 − pe)j−1 and then

�j =
j
∏

j′=2

pj′−1,j′
pj′,j′−1

≤
pj−1e

(1 − pe)j−1
= �j−1 (A2)

for j = 2,… , S. Therefore
∑S
j=2 �j ≤

∑S
j=2 �

j−1, which applied in (A1) yields �1 ≥ �1.□

A.2 Proof of Theorem 1
The sequence of instantaneous regret values rn, for n = 1, 2,… can be divided into consecutive groups corresponding to the
observations taken at each exploration stage. The counting process associated to the exploration stages k = 0, 1, 2,… can be
seen as a renewal process in which the time between renewals is a random variable determined by the OS policy, and E[t] is the
expected time (in time-slots) between renewals. Similarly letE[R] denote the expected accumulated regret during an exploration
stage, and let E[Rj] = E[R|Yn = j] denote the expected accumulated regret during an exploration stage at j . Given these
elements, we have a renewal reward process in which the expected reward received upon each renewal is E[R]. By Theorem
3.6.1. of48 we have that

lim
n→∞

R(n)
n

= E[R]
E[t]

(A3)

Let us start with the upper bound. Because {Yk} is a Markov process, the sequence of accumulated rewards per stage is Markov
reward process, in which the expected reward associated to each state j is E[Rj]. Therefore, we can express E[R] as E[R] =
∑

j∈ �jE[Rj] where �j is the steady state probability of {Yk}. Because LEOS uses a regret minimization algorithm (UCB),
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E[Rj] is upper bounded by the accumulated regret of an algorithm selecting actions at random, with uniform probability:
E[Rj] ≤ E[tj]

∑

a∈j

Δa
m
, therefore we have

E[R]
E[t]

≤
∑

j∈
∑

a∈j
�j

E[tj ]
E[t]

Δa
m

=
∑

j≠1
∑

a∈j
�j

E[tj ]
E[t]

Δa
m
+
∑

a∈1
�1

E[t1]
E[t]

Δa
m

(A4)

Note that �j
E[tj ]
E[t]

is the probability that the LE algorithm is exploring region j at a given time-slot n, P [a∈j]. To show this, we
can apply the renewal reward theorem considering renewal periods with average length E[t] as in (A3), and the reward given by
an indicator function 1{a∈j}, which equals 1 when the selected action belongs toj , and 0 otherwise: P [a∈j] = lim

n→∞

E[1{a∈j }]

n

= �jE[tj ]
E[t]

. Using this definition in (A4) we have
E[R]
E[t]

≤
∑

j≠1
∑

a∈j
P [a∈j]

Δa
m
+
∑

a∈1
P [a∈1]

Δa
m

≤
∑

a∈S

Δa
m

∑

j≠1 P [a∈j] +
∑

a∈1
P [a∈1]

Δa
m

=
∑

a∈S

Δa
m
(1 − P [a∈1]) +

∑

a∈1
P [a∈1]

Δa
m

= (1 − �1
E[t1]
E[t]

)
∑

a∈S

Δa
m
+ �1

E[t1]
E[t]

∑

a∈1

Δa
m

(A5)

Applying Lemma 1, and defining C = E[t1]
E[t]

we get E[R]
E[t]

≤ (1 − �1C)
∑

a∈S

Δa
m
+ �1C

∑

a∈1

Δa
m
.

The lower bound to (A3) corresponds to LEOS exploring at1 with perfect estimation, and perfect identification of the best
action after a single observation from each action. Because the estimations are reset at most after N time-slots, at least one
sample must be taken from each action a ∈ 1 every N time-slots, with an expected regret Δa, resulting in the lower bound
1
N

∑

a∈1
Δa, which concludes the proof.□

A.3 Proof of Theorem 2
The proof of Theorem 2 makes use of the following result.
Lemma 2. Consider the LE algorithm operating in the one-dimensional case, over a set of unimodal actions comprising S

exploration regions. Assume that the optimal action is located in region 1. LetX0, X1,… be the sequence of exploration regions
visited by LE at each exploration period k = 0, 1,…. Let tj denote the mean first passage time to region 1 starting in region j
(tj = E

[

min
{

k ≥ 0|Xk = 1
}

|X0 = j
]

). The inequality tj > tj−1 holds for j = S,… , 2.
Proof. This Lemma is proven by induction. The mean first passage times are given by the following set of equations:

tj = 1 +
∑S
j′=1 pj,j′ tj′ , for j = 2,… , S

t1 = 0
(A6)

Because the LE algorithm can only make transitions among adjacent regions, we have

tS = 1 + pS,S−1tS−1 + pS,S tS (A7)

solving for tS we obtain
tS =

1
1−pS,S

+ pS,S−1
1−pS,S

tS−1
= 1

1−pS,S
+ tS−1

> tS−1.

(A8)

The relation t2 > t1 holds trivially, since t2 ≥ 1 > t1 = 0. Now, we assume that tj+1 > tj (for S > j > 2), and then show that
tj > tj−1. From (A6) we have

tj = 1 + pj,j−1tj−1 + pj,jtj + pj,j+1tj+1. (A9)
Using tj+1 > tj we obtain the following inequality

tj > 1 + pj,j−1tj−1 + pj,jtj + pj,j+1tj
= 1 + pj,j−1tj−1 + (1 − pj,j−1)tj

(A10)

Solving for tj we obtain
tj >

1
pj,j+1

+ tj−1 > tj−1 (A11)

which concludes the proof of Lemma 2.□
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Now we can proof Theorem 3. Because LE takes at most N samples from each exploration region during each exploration
stage, we have that E[T |X0 = j] ≤ Ntj , therefore using Lemma 2 we have that

E[T ] ≤ max
j∈

E[T |X0 = j] ≤ NtS (A12)

Let us consider the system of equations (A6) providing the first passage times. For tS , we have

tS = 1 + pS,S−1tS−1 + pS,S tS
≤ 1 + (1 − pe)tS−1 + petS

(A13)

where the inequality comes from the fact that pe ≥ pS,S and tS > tS−1 (Lemma 2). ForS > i > 2, the following inequalities hold

tj = 1 + pj,j−1tj−1 + pj,jtj + pj,j+1tj+1
≤ 1 + pj,j−1tj−1 + (pj,j + pj,j+1)tj+1
≤ 1 + (1 − pe)tj−1 + petj+1

(A14)

where the first inequality results from Lemma 2. The resulting system of inequalities can be simplified by substitution. Equation
(A13) can be expressed as tS ≤ 1

1−pe
+ tS−1, which applied into (A14) for j = S − 1 results in tS−1 ≤ 1

1−pe
+ pe

(1−pe)2
+ tS−2.

Proceeding backwards, we obtain the following set of recursive equations

tS−j ≤
1

1 − p

j
∑

k=0
�k + tS−j−1, for j = 0,… , S − 2 (A15)

where � = pe
1−pe

. Using (A15) to solve for tS we obtain

tS ≤ 1
1−pe

(

∑0
k=0 �

k +
∑1
k=0 �

k +…+
∑S−2
k=0 �

k
)

= 1
1 − pe

S−2
∑

j=0

j
∑

k=0
�k

= 1
1 − pe

S−2
∑

j=0

1 − �j+1
1 − �

(A16)

which applied in (A12) concludes the proof.□
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