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Abstract— In heterogeneous cellular networks (HetNets),
switching OFF small cells under low user traffic periods has
been proved to be an effective energy saving strategy. However,
this strategy has strong interactions with interference coordina-
tion (IC) mechanisms, making it convenient to address both tasks
simultaneously. The motivation of this paper is to develop a self-
optimization algorithm capable of jointly controlling energy sav-
ing and IC mechanisms using an online learning approach. Our
proposal is based on a contextual bandit formulation that, among
other challenges, implies discovering the most energy-efficient
control actions while satisfying a predefined level of Quality of
Service (QoS) for the users. We propose a two-level framework
comprising a global controller, in charge of a group of macro
cells, and multiple local controllers, one per macro cell. The
global controller implements a novel algorithm, referred to as the
Bayesian Response Estimation and Threshold Search (BRETS),
that is capable of learning, for each control action, its feasibility
boundaries in terms of QoS and its energy consumption as a
function of the aggregated user traffic. The algorithm comes with
a bound on its expected convergence time. The local controllers
translate the control actions learned by the global controller into
local decisions. Our numerical results show that BRETS is only
1% less efficient than an ideal oracle policy, clearly outperforming
other benchmark algorithms.

Index Terms— Online learning, conextual multi-armed bandit,
green networks, heterogeneous networks, interference coordina-
tion.

I. INTRODUCTION

APROMISING step towards increasing the network capac-
ity is based on the dense deployment of small cells, thus

realizing the so-called Heterogeneous Networks (HetNets),
considered one of the key technologies in 5G networks [1].
Nevertheless, the densification of HetNets poses two main
challenges: the increment of the energy consumption due to
the larger number of cells, and the inter-cell interference from
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Fig. 1. Energy consumption and QoS satisfaction values in a macro cell for
different combinations of IC and ES controls under the same traffic conditions.
IC controls are given by the Almost Blank Subframe (ABS) ratio, and Cell
Range Expansion (CRE) bias, while ES controls are determined by the number
of active picos in the macro cell.

the macro to the small cells. For the first issue, the most
effective energy saving (ES) strategy is to switch off under-
utilized small cell stations, if this is possile, while avoiding
noticeable degradation of the Quality of Service (QoS) of the
network users [2]. For the second one, interference coordi-
nation (IC) mechanisms allow the network to optimize its
wireless access capacity by adjusting the interference level
and the radio resource allocation between macro and small
cells [3]. However, these two mechanisms are intertwined:
switching on/off small cells yields a reassignment of the user
equipments (UEs) to the active base stations and, consequently,
a change in the inter-cell interference. In turn, the IC control
mechanisms will adjust the transmission resources assigned
to the different UEs and their transmit power, thus impacting
on the overall energy consumption of the system. To exemplify
the concept, we report in the upper row of Fig. 1 the heat
maps of the overall energy consumption and in the lower
row the corresponding heat maps of the fraction of UEs
with satisfactory QoS (i.e., sufficiently high throughput in this
example), when varying the number of active picocells from
0 to 6 (left to right). For each number of active picos, the heat
maps are obtained by changing the configuration of the Almost
Blank Subframe (ABS) and the Cell Range Expansion (CRE)
bias, which are two IC mechanisms that will be explained in
detail later. We can observe how energy efficiency and QoS
satisfaction jointly depend on the number of active picos and
the setting of the IC parameters. Therefore, addressing both
tasks simultaneously has been shown in [4] to improve ES
while maintaining a desired level of QoS.
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On the other hand, the self-optimization of network control
tasks is also considered a key feature of 5G networks [5],
[6], enabling the network to autonomously find the most
efficient configuration for each functionality without need for
human intervention. To attain this objective, an online learning
approach is especially interesting since it aims at learning the
most effective configurations using observations taken from
the real operating network. Offline learning algorithms, in con-
trast, need to be trained before their implementation in the real
system, requiring either a simulated model of the network, or a
data set obtained from the system, involving additional costs.
Moreover, the resulting control policies would be effective
as long as the real network behaves as predicted during the
offline training phase. Inaccuracies of the simulation model,
biases in the data set, or changes in the network, might reduce
the effectiveness of the policy. Notably, although there exist
previous online learning proposals for IC [7], [8] and ES [9]
separately, this approach has not yet been applied to the joint
control of IC and ES, which is the motivation of this work.

Designing an online learning scheme for IC-ES is a chal-
lenging task because of several reasons. First, the performance
degradation associated to the exploration of poor performing
controls should be kept at minimum. Second, the dimension
of the control space can be very large because in principle it
comprises all the combinations of IC and ES control values.
Third, the optimal IC-ES configuration depends on the user
traffic intensity in the network, which changes over time.
Fourth, our problem involves keeping the QoS perceived by
the users above a certain value.

The online learning approach fits a multi-armed ban-
dit (MAB) problem where the state of the system contexts
changes independently of the controls, i.e., a contextual bandit
problem [10], whose objective is to learn the best configuration
at each possible intensity of the network traffic (context).
Nevertheless, while classical contextual bandits only consider
one performance metric, we must consider two: energy saving
and QoS fulfillment. The latter is introduced in the problem
as a constraint, resulting in a novel variant referred to as
constrained contextual bandit problem. Besides, the contexts
take values from a continuous set, unlike the usual case, where
a finite set is considered.

Our application scenario is an HetNet composed of a set
(or cluster) of contiguous macro eNodeBs (eNBs), and mul-
tiple pico eNBs overlapping the coverage area of the macro
eNBs. The IC functionality considered is the enhanced Inter
Cell Interference Coordination (eICIC) mechanism proposed
by the 3GPP for LTE-A Networks [3]. Our framework com-
prises two decision levels, global and local, corresponding
to the cluster and the individual macro eNBs, respectively.
At the global level, a centralized entity (global controller)
makes IC-ES decisions for the whole cluster and obtains
performance observations from the eNBs of the cluster. The
online learning algorithm operates in the global controller,
allowing it to progressively learn how to select better controls
based on the history of past decisions and observations. At the
local level, the local controllers decide how to effectively
translate each global configuration prescribed by the global
controller into a local configuration for each macro cell.

This approach, introduced in our earlier work ClassMAB [11]
relies on the results from previous works [7], [12], according
to which it is more effective to use the same IC control in sets
of contiguous eNBs (synchronized muting), instead of using
different controls for each eNB.

However, the learning algorithm proposed in this paper is
substantially different from ClassMAB and follows a novel
strategy consisting of associating each control action with two
concurrent learning processes. The first one, referred to as
Threshold Search (TS) is a new mechanism based on the
premise that, for each control action, the QoS objective is
fulfilled only when the UE traffic intensity is below some
threshold. The traffic threshold for each control is initially
unknown, and the efficient discovery of all the thresholds is the
objective of TS. The second learning process, Response Esti-
mation, aims at estimating the function that maps traffic inten-
sity to network energy consumption (the network response) for
each control. Response Estimation uses a Bayesian approach,
in particular a Gaussian Process, which generates response
functions estimations with relatively few samples and provides
the uncertainty of the estimation at each traffic intensity. This
allows us to apply the principle of optimism in the face of
uncertainty used by classic bandit algorithms [13], [14] in
a novel way: each control action is associated to a function
instead of a scalar. This concurrent learning strategy allows our
algorithm to obtain information about multiple context values
at each decision stage, increasing its sampling efficiency and
therefore its learning rate with respect to other alternatives
such as ClassMAB.

In summary, the main contributions of this work are:

• An online learning framework for the joint control of
energy saving and interference coordination mechanisms
in HetNets based on a new variant of contextual bandit
problems which comprises a constraint.

• A novel approach to the above problem based on asso-
ciating two learning processes to each control, one per
performance metric. Each process aims at learning a
function mapping the context variable (network traffic
intensity) to one performance metric.

• A new algorithm (Threshold Search) implementing the
learning process associated to the QoS response of the
system. This algorithm is characterized in terms of con-
vergence time.

The remainder of the paper is organized as follows.
In Section II the related work and contribution summary are
given. In Section III we describe the interference management
mechanism and the system model allowing us to formulate
the contextual bandit problem. In Section IV we describe our
joint coordination framework and our proposed exploration
algorithm, which is analyzed in Section V. Finally, the numer-
ical results are given in Section VI and the conclusions are
provided in Section VII.

II. RELATED WORK

Both ES and IC in HetNets have been widely investigated
during the last years, generally as separate problems. One
of the most usual approaches in ES is to formulate the



1376 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 6, JUNE 2019

TABLE I

COMPARISON OF ENERGY SAVING RELATED WORKS

problem as a Markov Decision Process (MDP) [28], [29].
The inherent computational complexity of the MDPs implies
the use of approximate dynamic programming approaches
such as Reinforcement Learning (RL) [28]. The complexity
and scalability of a learning approach is directly related to
the dimensionality of the state and control spaces (curse of
dimensionality). Other works make a compact representation
of the state space using a function approximation [28], [32],
[33]. Specifically, Comsa et al. [32] and Comşa [33] propose
a RL approach to determine the scheduling rules under QoS
constraints. But even with this strategy, RL algorithms rely on
offline learning before being implemented in a real network.
This is because of the slow convergence properties of RL. The
main drawback of this strategy is that it requires a very accu-
rate simulation model for each specific network deployment.
Our previous work [4] addressed the IC-ES control also from
an offline learning perspective, using dynamic programming
and certainty equivalence control. In contrast, our current
proposal follows an online learning approach and is designed
specifically to operate on the real network without previous
training.

Other works have addressed IC in HetNets using learning
algorithms [6]–[8], [34]. Simsek et al. [34] propose Q-learning
algorithms for learning ABS ratio and CRE bias. Our previous
works [7] and [8] propose online learning algorithms for IC
configuration control. While [8] applies a multi-armed bandit
strategy, [7] is based on Response Surface Methodology.
However, these proposals are not applicable to the IC-ES
problem considered in this paper, because of the diverse new
challenges: the higher dimension of the problem, the absence
of the main property exploited by [7] and [8] (unimodality of
the system response), the presence of a second performance
metric in the form of a constraint, and the inclusion of the
network traffic intensity (context) in the decision making
process.

Virdis et al. [25] and Zheng et al. [31] address the problem
of energy saving in HetNets exploiting the ABS configuration
and show that the ABS configuration has a significant impact
on the power consumption. Nevertheless, eNB on-off switch-
ing is not considered.

The problem of eNB on-off switching has been also
addressed as an optimization problem [15], [17]–[23], [25].
These problems are usually addressed using iterative algo-
rithms aimed at finding suboptimal solutions since their
computational complexity is NP-Hard in most cases. More-
over, the solutions of these problems have to be recomputed
whenever the network state (e.g., traffic intensity) changes.
In contrast, our proposal learns efficient configurations for
any network state. Some of these works [17]–[23] also take

into account the user association problem, but none of them
considers interference management which, as our work shows,
has a notable impact on the performance of on-off switching
algorithms in HetNets.

Some works address the eNB switching problem using
Stochastic Geometry [24], [26], [27], [35], [36]. Nevertheless,
this approach is based on a network model with some sim-
plifications (e.g., eNBs deployed following a Poisson Point
Process, path loss as the channel model). In contrast, our
proposal is able to learn using real data from the network
and does not require any simplification nor assumption in the
network model. Table I summarizes the main aspects of the
previous works most related to ours.

Other works have used contextual bandit algorithms in cel-
lular networking problems [9], [37], [38]. In [37] an algorithm
for content caching based on contextual bandits is proposed.
This algorithm learns the context-dependent popularity profiles
in order to update the cache content efficiently. In [38] a con-
textual bandit algorithm addresses the beam alignment prob-
lem in millimeter wave systems. Maghsudi and Hossain [9]
propose a multi-armed bandit framework for energy-efficient
small cell activation but, in contrast to our work, they do not
take into account the state of the network (traffic intensity), and
do not consider the influence of the interference coordination
mechanisms on the global network performance. To the best
of our knowledge, our work is the first to apply a contextual
bandit formulation for IC-ES control in HetNets.

III. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section, we first detail the IC mechanism and the
consumption model associated with this technology. Then,
we present the system model and formulate the problem
addressed.

A. Interference Management in LTE-A: eICIC

The 3GPP Release 10 specifies eICIC [3] as the interference
coordination mechanism for LTE-A. To minimize inter-cell
interference, eICIC schedules the radio resources for pico and
macro eNBs in different time periods (subframes). It comprises
two main features: Cell Range Expansion (CRE) and Almost
Blank Subframe (ABS).

The CRE increases the pico eNBs footprint by adding a
bias to their Received Signal Reference Power (RSRP). It is
intended to balance the offloading (from macro to pico eNBs)
in the network. To select an eNB to associate with, the UE adds
the CRE bias to the pico RSRP but not to the macro RSRP,
and then selects the eNB with maximum (corrected) RSRP.
Thus, the higher the CRE bias, the larger the footprint of the
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pico eNBs. However, the UEs located in the extended region
(CRE UEs) will generally have a poor channel quality due to
the high interference received from the macro eNB. Note that
a CRE UE receives a stronger signal from the macro eNB
than from the pico eNB to which it is currently associated.
ABS is motivated by the need to improve the performance
of CRE UEs and consists of reserving certain subframes for
pico cell traffic only, muting data transmission from the macro
eNB on some radio subframes (Almost Blank Subframes).
The ABS ratio defines the portion of muted subframes over
the total number of subframes (muted and not). We consider
synchronized muting, as recommended by the 3GPP [12]. That
is, the eICIC controls are applied globally to a cluster of
macro eNBs with homogeneous traffic profile. This implies
that ABS subframes are free from interference of nearby
macro eNBs since these eNBs are muting their ABS subframes
simultaneously. The SINR at UE receiver i served by eNB j
is given by:

SINRi =
P tx

j · gi,j
∑

m∈Mi
P tx

m · gi,m +
∑

p∈Pi
P tx

p · gi,p
(1)

where:
• P tx

j is the transmission power of eNB j;
• gi,j is the channel gain between eNB j and UE i;
• Mi is the set of interfering macro eNBs of UE i;
• Pi is the set of interfering pico eNBs of UE i.

Note that in ABS subframes Mi = ∅, because of synchro-
nized muting. The CRE bias also affects the SINR since it
determines UE association decisions.

B. eNB Power Consumption Model

The eNB consumption model used in this work is based on
3GPP guidelines [39]. The power consumption of some of the
components of an eNB depends on its load. Thus, it is common
to assume a linear relationship between RF output power and
power consumption of eNB transceivers (TRXs) [39]. The
power consumption model of a pico eNB j is given by:

Cj
p =ej ·NTRX · (P0+Rj · Pmax)+(1−ej) ·NTRX · Psleep (2)

where:
• ej = 1 when the pico eNB j is active and ej = 0

otherwise;
• NTRX is the number of TRXs;
• Pmax is the TRX power consumption when the eNB

transmits at maximum RF output;
• P0 represents the TRX power consumption when the eNB

is active but not transmitting;
• Rj ∈ [0, 1] is the load factor of the pico eNB j and

depends on the ABS ratio, the CRE bias, the traffic
intensity and the location of UEs;

• Psleep is the power consumption of TRX components in
sleep mode.

The power consumption of the macro eNB i is given by

Ci
m =NTRX · (P m

0 +Ri · P m
max) · (1− γ)+NTRX · P m

0 · γ (3)

where γ denotes the ABS ratio, P m
max is the maximum power

output of the macro eNB and P m
0 is the power consumption at

zero RF output power of the macro eNB. Given the influence
of the ABS ratio and the CRE bias on Cj

p and Ci
m, our

proposal includes these parameters in the control of the energy
consumption.

C. System Model

We consider a set of M macro eNB sectors denoted by
M. Let Pm be the set of pico eNBs overlapping the macro
sector m. We denote the ABS ratio and the CRE bias by γ ∈ Γ
and φ ∈ Φ, respectively, where Γ and Φ are the finite sets
comprising all available configurations for these parameters.
Time is divided into stages denoted by k ∈ {0, 1, . . .}.

1) States: Let ej
k be the state of the pico eNB j ∈ Pm at

stage k, where ej
k = 1 when j is switched on and ej

k = 0
otherwise. Let pm

k = (e1
k, . . . , e

|Pm|
k ) be the vector indicating

the on/off state of all the pico eNBs in Pm. The joint state
of all picos in the network at stage k is represented as
pk = (p1

k, . . . , pM
k ), and the set of all possible values of pk is

denoted by E . Let λk ∈ Λ be the aggregate traffic load in the
network at stage k, where Λ is a set containing all possible
values of traffic intensity. We define the network state at stage
k as sk = (λk, pk−1) ∈ S, where S = Λ×E is the state space.

2) Controls: The network control is given by ak =
(pk, γk, φk) ∈ A, where A = E × Γ × Φ is the control
space. Let am

k = (pm
k , γk, φk) be the local control for the

sector m. Given sk, the decision maker selects a control ak

based on its previous knowledge. The upcoming network state,
sk+1 = (λk+1, pk), depends on the current control and on the
traffic at the next stage, which is unknown in advance.

3) Feedback functions: We define two feedback functions:
C : S ×A → R providing the aggregated power consumption
of macro and pico eNBs in the network and Q : S×A → [0, 1]
which gives the ratio of UEs in the network fulfilling a mini-
mum value of a performance metric selected by the operator.
Let Qmin be the minimum value of Q allowed in the network,
i.e., the minimum ratio of UEs in the network meeting the
performance metric value selected by the operator. Note that
the values obtained from C and Q are random variables due
to the randomness of UE locations and traffic demands.

D. Constrained Contextual Bandit Formulation

We define a policy as a function π : S → A which maps
network states into controls. A learning agent following a
policy π operates as follows: (i) the learning agent obtains
the network state sk at stage k and selects the control ak that
policy π prescribes for sk; (ii) the network operates according
to the control ak during stage k, gathering performance
measures from each eNB in order to obtain the feedback values
(Ck, Qk) that are sent back to the learning agent at the end
of stage k; (iii) the learning agent receives the feedback and
updates the policy π accordingly.

Our goal is to learn, stage by stage, a policy π minimizing
the power consumption, while attaining a minimum desired
QoS threshold Qmin. We define the set of policies satisfying
this QoS requirement as follows

ΠQoS = {π ∈ Π : Q(s, π(s)) ≥ Qmin ∀s ∈ S} (4)
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where Π is the set of all possible policies. The optimal policy
π∗ is the one that minimizes the average consumption per
stage in the long term, i.e.,

π∗ = arg min
π∈ΠQoS

lim
N→∞

1
N

E

[
N∑

k=1

C(sk, π(sk))

]

(5)

where the expectation is taken with respect to the traffic
intensity (λk in sk).

Note that ΠQoS is initially unknown and must also be
discovered by the learning algorithm. This implies that the
algorithm needs to select, during the learning process, controls
ak that violate the QoS constraint. Therefore, in order to
evaluate the efficiency of the learning process, we need to
define a per-stage cost function including a penalty term
for violations of the QoS constraint. For this purpose we
define

ρ(s, a) = C(s, a) + CQoS(s, a). (6)

where the penalty function CQoS satisfies the following condi-
tions: if Q(s, a) < Qmin, then C(s, a)+CQoS(s, a) > C(s, a′),
where a′ is any control satisfying the QoS requirement; and
if Q(s, a) ≥ Qmin, then CQoS(s, a) = 0. Given this definition
of ρ(s, a), the optimal policy π∗ can be alternatively defined
as follows

π∗ = arg min
π∈Π

lim
N→∞

1
N

E

[
N∑

k=1

ρ(sk, π(sk))

]

. (7)

The pseudo-regret (referred to as regret henceforth) of a policy
π over N stages is given by

Rπ(N) =
N∑

k=0

(
E [ρ(sk, π(sk))]− E [ρ(sk, π∗(sk))]

)
. (8)

This metric accumulates the loss incurred when selecting
a suboptimal control at each stage and can then be used
to assess the performance of a policy. That is, the lower
the regret of a policy, the closer the policy to the opti-
mal one. In addition, it also characterizes the convergence
rate towards the optimal policy. A sub-linear regret implies
that the performance of the algorithm converges towards the
optimum.

In order to find policies minimizing (8), it is necessary to
deal with the curse of dimensionality since the dimensions
of the state and control spaces (S and A) make the problem
intractable as the network size grows. In particular, the size of
the set E grows exponentially with the number of pico eNBs
per sector and with the number of sectors (|E| = 2

�M
m=1 |Pm|).

Therefore, a solution algorithm should incorporate a dimen-
sion reduction strategy, as the one explained in next
section.

IV. PROPOSED SCHEME

In this section we first describe the general framework in
terms of black box functionality and data flow. Then, we detail
the proposed algorithm for finding an efficient control policy.
Table II summarizes the most relevant parameters of the
proposal.

TABLE II

NOTATION TABLE

Fig. 2. ES and IC framework comprising a HetNet with M sectors, the global
controller that learns efficient global controls from the network state and
performance metrics, and M local controllers (LCm) which compute local
controls for each sector.

A. Two-Level Framework

Previous works [7], [12] have discussed the performance
benefits of applying the same eICIC parameter configuration
in contiguous sectors (synchronized ABS). Following this
approach, we consider that the access network is divided into
groups of contiguous macro cells, referred to as clusters, with
similar traffic conditions, such that all the sectors of the cluster
share the same eICIC configuration values, γk and φk.

The functional elements of the proposed scheme are
depicted in Fig. 2 and consist of the controlled cluster compris-
ing M sectors, a central entity (global controller), and M local
controllers (LCs), one per sector. This scheme decomposes
the decision problem into two levels. At the higher level,
the global controller operates with state and action spaces
with reduced dimensions, while at the lower level, the local
controllers translate the global controls sent by the global
controller into M local controls am

k , with full dimension, that
together constitute the complete network control ak.

This dimension reduction is done by replacing the activation
state vector pk by the ratio of active pico eNBs per sector
in the HetNet, rk ∈ R, where R is a finite set containing
the possible values of rk . The global state is then defined
as s̃k = (λk, rk). Therefore, the global control is defined as
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the triplet uk = (rk, γk, φk). Note that the dimension of the
state and control spaces, denoted by S̃ and U , respectively,
are linear with |R| and independent of M . Therefore, the idea
is that similar traffic conditions allowing the M sectors to
benefit from using the same eICIC configuration γk and φk,
also allow them to share the same ratio rk, provided that each
local controller LCm applies rk efficiently to generate its local
activation vector pm

k .
The parameters determined by the general controller are

passed to the different LCs, which in turn must determine
the actual eNB activation patterns pm

k . To this end, the LCs
consider the cell adjacency parameter, which measures how
much a pico eNB is isolated, i.e., far from other base stations.
The idea is that isolated pico eNBs should not be switched
off, to avoid that all their UEs get connected to the macro
eNB, increasing the energy consumption. Formally, the cell
adjacency of the pico eNB j is defined as

dj = w · dj
m + (1 − w) · dj

p (9)

where dj
m is the distance to macro eNB, dj

p is the average
distance to the rest of pico eNBs in the sector and w ∈ [0, 1]
is a weighting factor. Then, the �rk · |Pm|� pico eNBs with the
largest cell adjacency will be activated, while the others will be
switched off. Formally, the elements in pm

k = (e1
k, . . . , e

|Pm|
k )

are obtained as follows

ej
k =

{
1 if Dm(j) ≤ �rk · |Pm|�
0 otherwise

(10)

where Dm(j) is the ranking of pico eNB j when the pico
eNBs are listed in decreasing order of cell adjacency.

To summarize, the proposed framework operates according
to the following data flow:

• At each stage k, all macro eNBs receive from their
corresponding pico eNBs the information about traffic
intensity in their cells. The macro eNB aggregates this
information and sends it to the global controller. The
global controller computes the overall traffic s̃k from the
information received from the macro eNBs and deter-
mines the general state (λk, rk).

• The global controller selects a global control uk and
broadcasts it to the LCs.

• Each local controller (LCm for m ∈ M) receives uk =
(rk, γk, φk) and transforms rk into a local vector pm

k in
order to obtain a local control am

k = (pm
k , γk, φk).

• Each sector m ∈ M operates with its corresponding local
control am

k during stage k.
• At the end of the stage, each macro eNB receives data

about the power consumption and the QoS from its
corresponding pico eNBs. The macro eNBs aggregates
this information to be sent to the global controller. The
global controller computes the feedback Qk and Ck from
the data received from all the macro eNBs.

• Using this feedback, the global controller updates its
knowledge according to the learning process described
in the following subsection.

Note that the duration of a stage is determined by the time
between consecutive performance observations. Therefore,

increasing the signaling frequency implies reducing the dura-
tion of a stage, resulting in a tradeoff between signaling
overhead and convergence time.

B. Global Controller Algorithms

In this section we present the Bayesian Response Estimation
and Threshold Search (BRETS) algorithm that operates in
the global controller selecting the global control uk at each
stage according to past observations. For each control u ∈ U ,
BRETS handles two learning processes in parallel, Threshold
Search and Response Estimation, associated to the energy con-
sumption and the QoS fulfillment, respectively. We describe
first the principles and strategies used by these processes, and
then we will present the complete BRETS algorithm in which
both schemes are coordinated.

1) Threshold Search (TS): TS is based on the following
premise: each control u determines the number of pico eNBs
in active mode, as well as the interference level and available
frame resources for pico and macro UEs (eICIC parameters).
Thus, u is indeed determining the capacity of the controlled
network. This implies that, for each u, there exists a user traffic
intensity λu

th above which the QoS requirement cannot be met.
We refer to λu

th as the traffic threshold for control u. Only if the
traffic intensity is below λu

th, is the network capacity associated
to u sufficient to attain the required QoS objective.

The value λu
th for each control u ∈ U is unknown a priori.

The objective of TS is to progressively discover the traffic
threshold λu

th for each control u ∈ U . Let luk denote the highest
λk under which control u has been used so far, such that the
QoS requirement has been satisfied (Qk ≥ Qmin), and let hu

k

denote the lowest λk for which u is known not to satisfy
the QoS requirement (Qk < Qmin). We define the uncertainty
region of a control u at stage k as the values of λ between
the bounds luk and hu

k . The threshold λu
th is thus contained in

this region, i.e., luk < λu
th < hu

k . The narrower the uncertainty
region, the more accurate the knowledge about λu

th.
According to the system data flow (Fig. 2), at the end of

each stage k the algorithm receives the feedback measurements
Ck and Qk associated with the selected control uk and the
global state s̃k. The QoS feedback is used to gradually narrow
the uncertainty region of the selected control. Thus, for a
selected control u, when Qk ≥ Qmin (and thus λk ≤ λu

th),
its lower bound is updated as follows luk = max

{
λk, luk−1

}
.

Otherwise (λk > λu
th), the upper bound is updated according

to hu
k = min

{
λk, hu

k−1

}
.

The QoS fulfilling function Q, could comprise multiple QoS
constraints, according to the preferences and objectives of the
operator. For example, the operator could be interested in guar-
anteeing that the distribution of the user throughput satisfies a
minimum required profile by setting a throughput objective to
be attained by at least 5% of its users and another throughput
objective for 50% of its users. The traffic threshold for each
control will be defined as the maximum network traffic beyond
which these two objectives cannot be met using this control.
As a consequence, if for a given traffic λk , a control u does
not satisfy both QoS constraints, then TS updates the upper
bound hu

k to λk .
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2) Response Estimation: For each control u, the function
that maps the traffic intensity λ to the network energy con-
sumption is referred to as the network response for control u.
These functions are initially unknown, and must be learned
as well, which in our proposal is done by associating each
control u to a Gaussian Process (GP) [40].

Let Lu be a finite set in which we store tuples (λk, Ck)
associated to the performance of the control u. The maximum
length of Lu is set to N . In Bayesian estimation a posterior
distribution is computed from a prior distribution and a set
of observations. In this work, the GP obtains the posterior
distribution of the power consumption (the mean μu,λ and the
standard deviation σu,λ) for a control u and a traffic λ from
a prior distribution and the set of observations Lu.

Let Cu,λ
k = μu,λ − 2σu,λ denote the lower bound of the

expected consumption for the control u under the traffic λ at
stage k. The estimation of Cu,λ

k will allow BRETS to find low
power consumption controls.

The reasons for using GPs are basically two. First, they
require relatively few samples to approximate the functions,
because they assume smoothness in the response. In other
words, the use of GPs implicitly assumes that a given control
obtains similar energy savings for similar traffic intensities,
which is reasonable in our setting. Second, GPs provide an
estimation of the uncertainty of the estimated response for any
traffic intensity. This is especially useful in an online learning
framework since the algorithm can exploit the principle of
optimism in the face of uncertainty. In our setting, using this
principle implies selecting the controls whose estimated energy
cost is lowest, considering the lower bound on this estimation
Cu,λ

k . By doing this, the algorithm tends to explore the areas of
the functions with higher uncertainty σu,λ, but also to exploit
the areas with lower empirical average μu,λ. This extends the
upper confidence bound (UCB) strategy to the case of learning
a function per control action, instead of a scalar.

3) Algorithm Operation: At each stage, the algorithm can
be in three different modes of operation: initialization, explo-
ration, and exploitation. The algorithm starts in the initial-
ization mode, which is visited only once. Then, at each
stage, the algorithm can enter either the exploration or the
exploitation mode. Let us detail each operation mode of the
algorithm.

1) Initialization. The algorithm initializes the values of the
bounds luk = 0 and hu

k = λmax for all u ∈ U . Then,
each u ∈ U is selected once. That is, during the first
|U| stages the algorithm explores all controls. After this
initial exploration, each control u ∈ U has an initial
estimation of its average consumption and an initialized
lower or upper bound.

2) Exploration. In this operation mode the algorithm aims
at reducing the uncertainty regions. To this end, the con-
troller select actions for which the sustainability of the
current traffic load λk is unknown, i.e., actions belonging
to the set

Hk = {u ∈ U : luk < λk < hu
k}. (11)

An example is sketched in Fig. 3, where we can see that
the first control satisfies the condition of being in Hk.

Fig. 3. Example of the values of the bounds luk and hu
k for three controls:

U = {1, 2, 3}. The uncertainty region of each control is marked with a dotted
line. Given the traffic intensity λk shown in the example, control 1 can be
selected in the exploration mode; control 2 can be selected in the exploitation
mode; control 3 will not be selected since it is expected to fail the QoS
requirement (λk > h3

k).

Let H′
k denote the set of controls u ∈ Hk for which

either luk = 0 or hu
k = λmax. If H′

k 
= ∅ then Hk is
replaced by H′

k (Hk ← H′
k). This allows the algorithm

to continue the initialization of the uncertainty regions
in the exploration mode.
To balance exploration and exploitation, we define B ∈
N as the exploration budget of the algorithm, which
decreases by one unit every time the algorithm enters
the exploration mode. Let ε0 ∈ R

+ be the exploration
constant. A control from Hk is selected if one of the
following events takes place: (i) B > 0 (ii) χ < ε0/k,
where χ ∈ [0, 1] is a uniformly distributed random
number. Then, the algorithm picks a control from Hk

for which the potential reduction in its uncertainty is
the largest:

uk = argmax
u∈Hk

[min [(λk − luk), (hu
k − λk)]] . (12)

If no exploration control is selected (i.e.,Hk = ∅ or B =
0 and χ > ε0/k), the algorithm switches to the exploita-
tion mode.

3) Exploitation. Let Tk be the set containing all exploita-
tion controls (those that are known to satisfy the QoS
constraints):

Tk = {u ∈ U : λk ≤ luk} (13)

For example, the second control in Fig. 3 belongs to Tk

and can potentially be selected in the exploitation phase.
More specifically, the algorithm selects a control from
the set Tk such that

uk = argmin
u∈Tk

Cu,λk

k . (14)

If Tk = ∅, the control closest to satisfying the QoS is
selected, that is,

uk = argmin
u∈U

[λk − luk ] . (15)

The operation of BRETS is summarized in Algorithm 1.

V. ALGORITHM ANALYSIS

This section analyzes the exploration strategy (12) of the
BRETS algorithm. First we provide a bound on the expected
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Algorithm 1 BRETS Algorithm
1: Input parameters: ε0, B
2: Initialization: luk = 0, hu

k = λmax

3: Pick every control u ∈ U once
4: for each stage k do
5: Hk = {u ∈ U : luk < λk < hu

k}
6: H′

k = {u ∈ Hk : luk = 0 or hu
k = λmax}

7: if H′
k 
= ∅ then

8: Hk ← H′
k

9: end if
10: if Hk 
= ∅ and (B > 0 or χ < ε0/k or H′

k 
= ∅) then
11: B = B − 1
12: uk = argmax

u∈Hk

[min [(λk − luk), (hu
k − λk)]]

13: else
14: Tk = {u ∈ U : λk < luk}
15: if Tk 
= ∅ then
16: uk = argmin

u∈Tk

Cu,λk

k

17: else
18: uk = argmin

u∈U
[λk − luk ]

19: end if
20: end if
21: Send uk to LCs
22: Receive the feedback Ck and Qk from the network
23: Update Luk with Ck and Qk

24: Update the GP associated with uk using Luk

25: if Qk > Qmin then
26: luk

k = max
{
λk, luk

k−1

}

27: else
28: huk

k = min
{
λk, huk

k−1

}

29: end if
30: nuk = nuk + 1
31: end for

convergence time of the exploration process, and then we
formulate this process as a stochastic shortest path (SSP)
problem. This allows us to show how our BRETS algorithm
exploits the structure of the optimal cost-to-go function.

A. Bound on the Expected Convergence Time

For the analysis, we consider that, at each stage k, the traf-
fic intensity λk takes a random value from the finite set
Λ = {0, δ, 2δ, . . . , λmax}, where δ denotes the granularity of
the traffic measurement. We further assume that the random
variables λk, for k = 0, 1, . . . are i.i.d. with a probability
distribution such that P (λk = λ) > 0 for all λ ∈ Λ. The values
of λu

th for each u ∈ U are also randomly distributed over Λ,
and are initially unknown. Let xu

k = {λ ∈ Λ : luk < λ < hu
k}

denote the uncertainty region for control u at stage k, and let
xk = (x1

k, . . . , x
|U|
k ) be a vector containing all the uncertainty

regions.
For discrete λk values, the exploration ends when hu

k = λu
th

and luk = λu
th − δ,1 which is equivalent to xu

k = ∅ or |xu
k | = 0,

1This ending condition implicitly assumes that λu
th > 0, which is equivalent

to assuming that every u fulfills the QoS requirement in the absence of user
traffic. Otherwise this u should not even be considered for exploration.

for all u ∈ U . With a slight abuse of notation we define |xk| =
(|x1

k|, . . . , |x
|U|
k |), so that the exploration ending condition can

be expressed as |xk| = (0, . . . , 0) = 0. Given a sequence
x0, x1, . . . the convergence time is defined as T = min{k :
|xk| = 0}.

Definition 1: Let us define as an appropriate exploration
strategy any strategy selecting u ∈ Hk whenever Hk 
= ∅ (as
our BRETS strategy does).

The following result provides an upper bound on the
expected convergence time of any appropriate exploration
strategy.

Lemma 1: Consider that, at every k, λk takes a random value
from a finite set Λ, with a stationary distribution such that
P (λk = λ) > 0 for all λ ∈ Λ. Then, the expected convergence
time E[T ] for any appropriate exploration strategy is bounded
as follows

E[T ] ≤ 3
2

|U|
min
λ∈Λ

P (λk = λ)
(16)

Proof: See appendix A.

B. Stochastic Shortest Path Model

The exploration process can be modeled as an SSP over an
infinite time horizon [41], comprising the following elements:

1) The state of the process at stage k is given by the vector
of uncertainty regions xk and the traffic intensity λk.

2) At each k, the exploration strategy μ (policy in the
SSP terminology) determines which u ∈ U should
be selected according to the observed state (xk, λk).
We restrict our attention to stationary deterministic poli-
cies, i.e., uk = μ(xk, λk) for all k = 0, 1, . . .

3) When a control u ∈ U is selected, xu′
k+1 = xu′

k for
all u′ 
= u, and xu

k+1 can take two values: x̄u
k+1, and

xu
k+1. The first one corresponds to the update luk+1 =

luk , hu
k+1 = min[λk, hu

k ] which occurs with probability
P (λk ≥ λu

th); the second one xu
k+1 corresponds to the

update luk+1 = max[λk, luk ], hu
k+1 = hu

k , with probability
P (λk < λu

th).
4) The transition probabilities between consecutive states

are determined by the policy μ, and by the probability
distributions of λk and λu

th.
5) The termination state corresponds to |xk| = 0.
6) The per-stage cost is 1 when |xk| 
= 0 and 0 otherwise.

With the above elements we can define the following cost-to-
go function for policy μ at a given state (xk, λk), as follows

Jμ(xk, λk) = lim
T→∞

E

[
T∑

t=k

I{|xt|�=0}

∣
∣
∣
∣xk, λk

]

, (17)

where I is the indicator function, and the conditional expec-
tation is obtained with respect to the transition probabilities
induced by μ and the distributions of λk and λu

th. The objective
is to find, for an initial state (x0, λ0), the optimal policy
μ∗ = arg minμJμ(x0, λ0). At every state (xk, λk), the optimal
cost-to-go function J∗ satisfies Bellman’s equation

J∗(xk, λk) = 1 + min
u∈U

E
[
J∗(xk+1, λ)

∣
∣xk, λk, uk = u

]
. (18)
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To simplify the notation, we consider only two controls U =
{1, 2}, although the following discussion can be generalized
to any finite set of controls. For xk = (x1

k, x2
k) we can use

the notation J∗(x1
k, x2

k, λk) or J∗(xk, λk) conveniently. Let us
develop (18) for U = {1, 2}:

J∗(x1
k, x2

k, λk) = 1 + min
[
E

[
J∗(x1

k+1, x
2
k, λ)

∣
∣xk, λk

]
,

E
[
J∗(x1

k, x2
k+1, λ)

∣
∣xk, λk

]]
(19)

where

E
[
J∗(x1

k+1, x
2
k, λ)

∣
∣xk, λk

]

= P (λk ≥ λ1
th)Eλ

[
J∗(x̄1

k+1, x
2
k, λ)

]

+P (λk < λ1
th)Eλ

[
J∗(x1

k+1, x
2
k, λ)

]
, and

E
[
J∗(x1

k, x2
k+1, λ)

∣
∣xk, λk

]

= P (λk ≥ λ2
th)Eλ

[
J∗(x1

k, x̄2
k+1, λ)

]

+P (λk < λ2
th)Eλ

[
J∗(x1

k, x2
k+1, λ)

]
(20)

and Eλ denotes the expectation computed with respect to λ.
Now we provide a definition followed by a result characteriz-
ing the structure of the optimal cost-to-go function J∗.

Definition 2: Given two uncertainty region vectors xk =
(x1

k, x2
k) and zk = (z1

k, z2
k), we say that xk contains zk if

z1
k ⊆ x1

k and z2
k ⊆ x2

k, and we express it as zk ⊆ xk.
Lemma 2 (Monotonicity of J∗): The optimal cost-to-go

function satisfies the following property:

J∗(xk, λk) ≥ J∗(zk, λk), if zk ⊆ xk (21)

for all λk ∈ Λ.
Proof: See Appendix B

This monotonicity result can be used to approximately
solve the SSP using an index policy, as discussed in the next
subsection.

C. Index Policy

There are two main difficulties for computing an optimal
policy. First, the dimensionality of the problem. Specifically,

the state space comprises
(|Λ|

2

)|U|
possible states, which

renders the SSP intractable for practical values of |Λ| and
|U| (note that U comprises all possible combinations of the
ratio of active stations r, the ABS ratio γ, and the CRE
value φ). Second, the distribution of λu

th for each u ∈ U is,
in general, not known a priori, which means that the transition
probabilities of the SSP cannot be computed accurately.

A feasible approach to overcome the previous limitations
is to use an index policy exploiting the structure of the
optimal cost-to-go function J∗. According to Lemma 2, for
a given λ and u, the reduction in the cost-to-go function,
J∗(xk, λ) − J∗(xk+1, λ), is larger for larger reductions of
the uncertainty region |xu

k | − |xu
k+1|. Because there are two

possible values of xu
k+1 (x̄u

k+1 and xu
k+1) for each control u,

one reasonable index policy is to select the u with the largest
expected reduction:

uk =argmax
u∈Hk

[P (λk≥λu
th)(h

u
k−λk)+P (λk <λu

th)(λk−luk)] .

(22)

Because the distribution of λu
th is in general unknown, BRETS

implements a worst case approach to (22). Note that (12) is
equivalent to

uk = argmax
u∈Hk

[
min

[
|x̄u

k+1|, |xu
k+1|

]]
(23)

and thus it is a maxmin index policy. Our numerical simula-
tions have shown that the index policy (23) converges almost at
the same rate of (22). We evaluated index policies determined
by the minimum or the expected largest uncertainty region, and
both of them obtained slower convergence rates than (23).

VI. NUMERICAL RESULTS

A. Description of the Simulation Framework

The numerical evaluations have been performed by using
a custom simulation framework developed in Python, which
is based on the 3GPP guidelines for the evaluation of LTE
networks [42]. The numerical results shown in this section
are obtained using synthetic network data generated by this
simulator. The network layout comprises 5 sectorized macro
eNBs (120 degrees) and several pico eNBs overlapping each
macro coverage area. We simulate the central sector using the
remaining ones to emulate the aggregated interference of a
larger network. The wireless channel is composed of pathloss
and stochastic shadow fading. The aggregated interference at
each UE receiver consists of the power received from all
interfering eNBs in the sector (picos and macro) plus the
interference from the macro eNBs from nearby sectors as
detailed in (1).

In our numerical evaluations, we define Q as the ratio of
UEs whose throughput is above a minimum value denoted by
Tmin = 100 kbps. Each incoming UE generates one through-
put measurement, which is defined according to the 3GPP
guidelines [42]. The power consumption model is defined
in Section III-B and the values of its parameters are shown
in Table III.

The number of pico eNBs per sector is P = 6 and the
number of ES controls is |R| = 7. The sets of available
configurations of eICIC parameters are Γ = {0, 1

8 , 2
8 , . . . , 7

8}
and Φ = {0, 6, 9, 12, 18}. For each control u one Gaussian
process (GP) is maintained by BRETS. For each GP, the max-
imum length of the set Lu is fixed to N = 100, the mean of
the prior distribution is set to zero, and the covariance matrix
is specified by the Matern kernel. The hyperparameters of the
kernel are optimized using a quasi-Newton algorithm. For the
sake of computational efficiency, these hyperparameters are
updated (step 20 in Algorithm 1) only 10 times during the
training phase of our simulations, whenever the set Lu has
the length 1, 2, 3, 5, 8, 13, 22, 36, 60, or 100. Gaussian
processes have been implemented using the Python toolbox
Scikit-learn [43]. The remaining simulation parameters are
shown in Table III.

B. Comparison of Local Control Strategies

In this subsection we compare our proposed local con-
trol strategy (eNBs with lower values of cell adjacency are
switched off first) to other alternative strategies, including
the optimal one obtained by evaluating all possible orderings.
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TABLE III

SIMULATION PARAMETERS

Fig. 4. Performance of the switching on-off policies in terms of QoS for
different numbers of active pico eNBs.

To obtain the numerical results we have set P = 6, ABS
ratio = 6/8 and CRE bias = 6 dB. Fig. 4 and 5 show the
network performance in terms of QoS (defined in Sec. III-C)
and 5th percentile throughput [42] of the following policies:

• Proposed order: eNBs with lower cell adjacency values
are switched off first.

• Reverse order: eNBs with higher values of cell adjacency
are switched off first.

• Optimum order: We select the best of the P ! possible
orderings of P pico eNBs in the sector.

• Worst case order: We select the worst of the P ! possible
orderings of P pico eNBs in the sector.

Both figures show that the proposed ordering strategy performs
similarly to the optimal one. The configuration parameter of
the proposed ordering strategy is w ∈ [0, 1] which has been
extensively evaluated by simulation. We found that its best
performing value is w = 0.4 which has been used in all the
numerical experiments of this section.

C. Benchmark Evaluation

In this section, we provide numerical results for our proposal
and compare its performance with the following benchmark
algorithms operating in the global controller:

Fig. 5. Performance of the switching on-off policies in terms of 5th percentile
throughput for different numbers of active pico eNBs.

• Oracle which selects, for each global state s̃k at stage k,
the optimal control u∗

k ∈ U , which is found by exhaustive
search. Note that the Oracle policy refers to the global
controller (U is the set of global controls) considering
near optimal performance of the local controllers. The
performance obtained with the oracle is used for measur-
ing the regret of the algorithms evaluated.

• Default configuration, which is a fixed control where
energy saving and interference mechanisms are deacti-
vated.

• NeuralBandit [44] implements a contextual bandit algo-
rithm based on neural networks. 2 It is aimed at learn-
ing the cost function ρ(x, u) for each control u (also
called arm in MAB terminology) given the context x.
It comprises, for each arm, a neural network with two
hidden layers of 20 units each. ReLU activation function
is considered for hidden layers. At each stage, an arm is
selected according to an ε-greedy policy with decreasing
ε. Then, the selected arm is trained by means of the
optimization algorithm Adam [46], using the feedback
measures Ck and Qk. That is, each NN is trained with

2Neural networks are implemented using the TensorFlow framework [45].
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one sample, by means of backpropagation, every time its
associated arm is used.

• ClassMAB [11] is our previous proposal for the problem
addressed. It comprises a neural network classifier aimed
at finding controls satisfying the QoS requirement, and
a MAB algorithm in charge of selecting controls with
low energy consumption. For the MAB algorithm we
proposed a modified version ε-greedy in which the set
of available controls is variable at each stage.

• ClassMAB (ES) refers to the ClassMAB algorithm, but
controlling only the energy saving mechanism. This
option is included to show the importance of considering
interference management when applying energy saving
actions.

Other state-of-the-art contextual bandit algorithms, e.g.,
[10], [14], [47], assume that the expected value of each arm
is linear with respect to the context. However, our cost func-
tion (6) shows a threshold structure, making these algorithms
unsuitable for this application.

Our simulations are aimed at assessing the performance
of the algorithms in two phases: a training phase composed
of 1200 epochs with 200 stages of variable traffic intensities,
and a test phase where the learning state of the algorithms is
frozen setting a greedy policy (i.e., using the control with the
lowest expected regret). BRETS, ClassMAB and NeuralBandit
start with an initialization period where each control is selected
once and are configured with ε0 = 30. The exploration
budget of BRETS is set to B = 300. The QoS threshold
is set to Qmin = 0.6, and the per-stage cost function is
defined as ρ(s, a) = C(s, a) + δ · max(0, Qmin − Q(s, a)),
with δ = 106. This definition results convenient because
of two reasons: first, the penalty imposed is proportional to
the QoS degradation, which is useful in terms of benchmark
comparison. And second, according to the simulation results,
this ρ complies with the conditions in Section III-D, i.e., under
the optimal policy (oracle) the penalty factor is never activated
since the QoS constraint is always satisfied. All the results
presented in this section are the average of 30 independent
simulation runs.

Fig. 6 shows the accumulated regret during the training
phase. The slope of the regret curve for BRETS is almost
flat, indicating that, in the long term, it selects controls very
close to the optimal ones. Besides, its accumulated regret is the
lowest, compared with the other benchmarks, which indicates
that its learning process is the fastest. The regret slope of
ClassMAB also approaches zero at the end of the training
phase. The accumulated regret of the default configuration
is not especially high at the end of the training phase since
this policy does not explore, but its regret grows linearly,
indicating that this policy does not converge to the optimal one.
Figure 7 shows the value of the cost function at each stage.
We can observe the fast convergence of BRETS (only a few
epochs are needed), and its ability to operate at smaller cost
values compared to other benchmarks. Note that, compared
to ClassMAB, NeuralBandit shows a slower learning rate
during the first 150 epochs, and a higher long-term cost value.
Of these two aspects, the first one is the most relevant in the
regret curve for NeuralBandit in Fig. 6. The long-term cost

Fig. 6. Regret measured during the training phase. The incurred regret at
each epoch is the summation of the regret of each one of its corresponding
200 stages.

Fig. 7. Evolution of the cost function during the training phase.

Fig. 8. Traffic pattern of one day considered in the test phase.

value of ClassMAB (ES) is higher than BRETS, ClassMAB and
NeuralBandit, which reflects the loss incurred when neglecting
the interference coordination mechanism.

We considered a one day period for the test phase, using
a stage duration of 10 minutes (i.e., a total of 144 stages).
At each stage, a random traffic intensity is generated according
to the traffic profile shown in Fig. 8. Note that in the case of
special events like sport games or live concerts, the algorithms
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Fig. 9. Evolution of the regret in the test phase.

Fig. 10. Power consumption during the test phase.

could face traffic peak values for which they have not received
samples during the training phase. In this situation, BRETS
enters the exploration phase (see Algorithm 1) in order to
discover which control could better handle this new situation.
If the QoS constraints cannot be met, BRETS selects the con-
trol closest to this objective. Fig. 9 shows the regret measured
during the test phase, during which BRETS obtains the lowest
regret, as expected, followed by ClassMAB and NeuralBandit.
Because the regret combines energy consumption and QoS
fulfillment, it is interesting to evaluate these two metrics sep-
arately for comparing performances. Fig. 10 shows the power
consumption at each stage. Note that, in general, the power
consumption pattern resembles the traffic profile (Fig. 8). It is
clear that the power consumption pattern shown by BRETS
is the closest to that of the Oracle. Finally, Fig. 11 shows the
estimated probability of failing to satisfy the QoS requirement
at each stage of the test phase. Note that during the traffic
peak (stages between 70 and 80) there are some stages in
which the policies neglecting the IC mechanism are not able
to meet the QoS requirement using any control, i.e., they fail
with probability 1. This shows again the importance of the
joint IC-ES control.

The benchmarks that do not incorporate the interference
coordination mechanism, besides consuming more energy, are

Fig. 11. Probability of failing the QoS requirement at each stage of test
phase.

TABLE IV

SUMMARY OF NUMERICAL RESULTS

unable to satisfy the QoS requirement in some stages. This
highlights the importance of combining interference coordina-
tion and energy saving mechanisms. The numerical results of
the test phase are summarized in Table IV where we show the
energy savings with respect to the default configuration and
the estimated probability of failing the QoS.

VII. CONCLUSION

This paper presented an online learning algorithm for jointly
controlling the energy saving and interference coordination
mechanisms in HetNets. Our framework considers two lev-
els. At the higher level, a global controller selects global
controls applicable to a cluster of contiguous macro cells.
At the lower level, local controllers decide how to apply
the prescribed global control on each macro cell sector. The
proposed learning algorithm, running in the global controller,
addresses a constrained contextual bandit problem using a
novel approach: for each action, the algorithm handles two
simultaneous learning processes, one for the performance
objective (network energy consumption) and another for the
constraint (QoS fulfillment). Each one of these processes aims
at learning a function, instead of a scalar as in conventional
bandit algorithms. These functions map the context (network
traffic intensity) to the performance metric of interest. For the
QoS function, we propose a novel strategy for finding the
traffic threshold below which each control fulfills the QoS
objective. For estimating the energy consumption functions,
the algorithm uses Gaussian processes, which allows the
BRETS to balance exploration and exploitation when selecting
controls. In our numerical simulations BRETS outperformed
other alternatives, attaining an energy saving of 25% and
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a QoS fulfillment ratio of 100%, very close to the results
obtained by an oracle policy.

Future work includes the following lines. Our proposal
could be complemented by an auxiliary learning algorithm
for finding clusters of contiguous cells in which joint IC-ES
controls can be applied effectively, i.e. for assigning cells to
global controllers. BRETS instances should be coordinated
among contiguous clusters, in order to avoid the mutual influ-
ence caused by the interference at their boundaries. A possible
approach would be to alternate the learning periods of adjacent
clusters. Finally, it would be interesting to evaluate the poten-
tial performance improvement of using one ES control per cell
instead of a common ES control for the whole cluster. Because
a larger control space is associated to a slower learning rate,
this might reveal a tradeoff between long-term performance
and convergence time.

APPENDIX A
PROOF OF LEMMA 1

The exploration of a control u ends when this control has
been used for the traffic values λu

th and λu
th − δ. If only

one control u has to be explored (U = {u}), we can
obtain, by means of an absorbing Markov chain, the following
expected convergence time:

E[T u]=
1

P (λu
th)+P (λu

th−δ)

(

1 +
P (λu

th)
P (λu

th−δ)
+

P (λu
th − δ)

P (λu
th)

)

(24)

where P (a) is short for P (λk = a). It can be easily checked
in (24) that E[T u] increases when P (λu

th)→ 0, and also when
P (λu

th − δ) → 0. Since Pmin = min
λ∈Λ

P (λk = λ) is the lower

bound for both P (λu
th) and P (λu

th − δ) we have

E[T u] ≤ 1
Pmin + Pmin

(

1 +
Pmin

Pmin
+

Pmin

Pmin

)

=
3
2

1
Pmin

. (25)

Consider a (non-appropriate) exploration strategy that explores
the controls in U sequentially, selecting current u until
|xu

k | = 0 before starting to explore the next control. Such
strategy has an expected convergence time of

∑
u∈U E[T u].

Now note that u ∈ Hk, with Hk 
= ∅, implies that u has not
yet been selected under the current traffic λk and therefore
P (λk = λu

th) > 0 and P (λk = λu
th−δ) > 0. Indeed, if u /∈ Hk,

P (λk = λu
th) = P (λk = λu

th − δ) = 0. Since an appropriate
strategy always selects u ∈ Hk whenHk 
= ∅, the probabilities
P (λk = λu

th) and P (λk = λu
th − δ) observed at each k by an

appropriate strategy are at least as large as those observed by
a non-appropriate strategy. As a consequence, the expected
convergence time E[T ] of an appropriate strategy cannot be
larger than

∑
u∈U E[T u] which, according to (25), is upper

bounded by 3
2

|U|
Pmin

. �

APPENDIX B
PROOF OF LEMMA 2

This lemma is proved by induction.
Step 1: First, we show that the inequality in (21) holds for

zk ⊆ xk such that z1
k = ∅ or z2

k = ∅. Let us consider z1
k = ∅

(all the steps are equivalent for z2
k = ∅). First, we need to

prove two preliminary inequalities:
1) Inequality 1:

Eλ

[
J∗(x1

k, x2
k, λ)

]
> Eλ

[
J∗(∅, x2

k, λ)
]

(26)

if x1
k 
= ∅. This inequality comes from the fact

that reaching a state with x1
k′ = ∅ from another

state with x1
k 
= ∅ takes at least 1 time-slot, there-

fore Eλ

[
Jπ(x1

k, x2
k, λ)

]
≥ 1 + Eλ

[
Jπ(∅, x2

k, λ)
]

>
Eλ

[
Jπ(∅, x2

k, λ)
]
.

2) Inequality 2:

Eλ

[
J∗(∅, x2

k, λ)
]

> Eλ

[
J∗(∅, z2

k, λ)
]

(27)

if z2
k � x2

k. For any x2 we have that

Eλ

[
J∗(∅, x2, λ)

]

= P1(x2)
1

P (λ2
th)

+ P2(x2)
1

P (λ2
th − δ)

+ P3(x2)E[T 2]

(28)

where

P1(x2) = P (λ2
th ∈ x2, λ2

th − δ /∈ x2)

P2(x2) = P (λ2
th /∈ x2, λ2

th − δ ∈ x2)

P3(x2) = P (λ2
th ∈ x2, λ2

th − δ ∈ x2) (29)

and E[T 2] is given by (24). If z2
� x2, then we have∑3

i=1 Pi(x2) >
∑3

i=1 Pi(z2), which results in

P3(x2) > P3(z2) +
2∑

i=1

(Pi(z2)− Pi(x2)) (30)

We can now obtain (27) for z2
� x2 as follows

Eλ

[
J∗(∅, x2, λ)

]

=
P1(x2)
P (λ2

th)
+

P2(x2)
P (λ2

th − δ)
+ P3(x2)E[T 2]

>
P1(x2)
P (λ2

th)
+

P2(x2)
P (λ2

th − δ)
+ P3(z2)E[T 2]

+ (P2(z2)− P2(x2))E[T 2]

+ (P1(z2)− P1(x2))E[T 2]

≥ P1(x2)
P (λ2

th)
+

P2(x2)
P (λ2

th − δ)
+ P3(z2)E[T 2]

+
P2(z2)− P2(x2)

P (λ2
th − δ)

+
P1(z2)− P1(x2)

P (λ2
th)

=
P1(z2)
P (λ2

th)
+

P2(z2)
P (λ2

th − δ)
+ P3(z2)E[T 2]

= Eλ

[
J∗(∅, z2, λ)

]
(31)

where the first inequality comes from (30), and the sec-
ond inequality comes from the fact that E[T 2] ≥ 1

P (λ2
th)

and E[T 2] ≥ 1
P (λ2

th−δ)
.

Bellman’s equation (19) for zk is

J∗(∅, z2
k, λ) = 1 + E[J∗(∅, z2

k+1, λ)
∣
∣zk, λk]. (32)
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By inequality 1 we have that

E[J∗(x1
k+1, x

2
k, λ)

∣
∣xk, λk] ≥ E[J∗(∅, x2

k, λ)
∣
∣xk, λk]

E[J∗(x1
k, x2

k+1, λ)
∣
∣xk, λk] > E[J∗(∅, x2

k+1, λ)
∣
∣xk, λk] (33)

and by inequality 2 we have that

E[J∗(∅, x2
k, λ)

∣
∣xk, λk] > E[J∗(∅, z2

k+1, λ)
∣
∣xk, λk]

E[J∗(∅, x2
k+1, λ)

∣
∣xk, λk] ≥ E[J∗(∅, z2

k+1, λ)
∣
∣xk, λk]. (34)

Therefore J∗(x1
k, x2

k, λk) ≥ J∗(∅, z2
k, λk).

Step 2: The induction step consists of showing that if the
inequality (21) holds for uncertainty region vectors contained
in xk, then it holds for xk, i.e., we assume that given zk

such that zk ⊆ xk, the inequality J∗(zk, λk) ≥ J∗(yk, λk)
holds for any yk ⊆ zk, and then we show that this implies
J∗(xk, λk) ≥ J∗(zk, λk).

Because zk ⊆ xk, we have (z̄1
k+1, z

2
k) ⊆ (x̄1

k+1, x
2
k),

(z1
k+1, z

2
k) ⊆ (x1

k+1, x
2
k), (z1

k, z̄2
k+1) ⊆ (x1

k, x̄2
k+1), and

(z1
k, z2

k+1) ⊆ (x1
k, x2

k+1), where the vectors in the right hand
side of ⊆ are contained in xk (thus equivalent to zk in the
induction assumption), and the vectors in the left hand side of
⊆ are contained in zk (thus equivalent to yk in the induction
assumption). Therefore, by the induction assumption we have

Eλ[J∗(x̄1
k+1, x

2
k, λ)] ≥ Eλ[J∗(z̄1

k+1, z
2
k, λ)]

Eλ[J∗(x1
k+1, x

2
k, λ)] ≥ Eλ[J∗(z1

k+1, z
2
k, λ)]

Eλ[J∗(x1
k, x̄2

k+1, λ)] ≥ Eλ[J∗(z1
k, z̄2

k+1, λ)]
Eλ[J∗(x1

k, x2
k+1, λ)] ≥ Eλ[J∗(z1

k, z2
k+1, λ)] (35)

Because P (λk ≥ λu
th) and P (λk < λu

th) are independent of
the uncertainty vectors, the above inequalities result in

E[J∗(x1
k+1, x

2
k, λ)

∣
∣xk, λk] ≥ E[J∗(z1

k+1, z
2
k, λ)

∣
∣xk, λk]

E[J∗(x1
k, x2

k+1, λ)
∣
∣xk, λk] ≥ E[J∗(z1

k, z2
k+1, λ)

∣
∣xk, λk] (36)

and therefore J∗(xk, λk) ≥ J∗(zk, λk). �
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