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Data-Driven Configuration of Interference
Coordination Parameters in HetNets

Jose A. Ayala-Romero , Juan J. Alcaraz , and Javier Vales-Alonso

Abstract—The heterogeneous networks (HetNets) performance
is highly dependent on the interference coordination among cells
since both macrocells and small cells share the same spectrum. This
paper focuses on the configuration of eICIC parameters: almost
blank subframe ratio and cell range expansion bias defined for
LTE-A. We propose an online learning mechanism based on a big
data-driven framework and multiarmed bandit algorithms that
retrieves data from the network to learn efficient configurations
of eICIC parameters without requiring any previous knowledge
about the network (e.g., traffic load, topology, scheduling algo-
rithm). Our numerical results show that our approach attains a
significant improvement with respect to the state of the art of on-
line learning algorithms in networks under stationary and variable
conditions (e.g., number of small cells, traffic load).

Index Terms—Interference coordination, heterogeneous net-
works, data-driven, model-free, online learning.

I. INTRODUCTION

THE amount of data produced in cellular network by mobile
phones and other smart devices is increasing exponentially

[1]. This creates an opportunity for network operators to extract
relevant information using big data techniques and to apply
algorithms that exploit this information for real-time decision
making in a wide range of applications. Specifically, we address
the interference coordination management problem in heteroge-
neous networks (HetNets) using a data-driven approach. Thus,
we propose to use the data retrieved from the network in order
to learn efficient configurations of the interference coordination
parameters and, attending to the dynamic nature of the network,
perform a real-time adjustment of the interference management
parameters according to variations in network conditions.

We consider a typical HetNet scenario with small cells over-
lapping the macro cell coverage area. Since all cells share the
same spectrum, the interference coordination management is
essential, specially where the small cell deployment density
increases. We apply our proposal to the enhanced Inter Cell
Interference Coordination (eICIC) technique defined by 3rd
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Generation Partnership Project (3GPP) for Long Term Evo-
lution Advanced (LTE-A) Network. The eICIC parameters are
Cell Range Expansion (CRE) bias and Almost Blank Subframe
(ABS) ratio.

The eICIC technique performs a resource allocation among
macro cells (macro eNB in 3GPP terminology) and pico cells
(pico eNBs) in the time domain. The optimal configuration of
eICIC parameters depends on the dynamically varying network
conditions (traffic load, user demands an positions, number of
active pico eNBs, etc) [2]. However, most previous works con-
sider a static situation of the network [3]–[11]. To overcome
this limitation, we formulate the problem as an online learning
problem where the proposed mechanism configures the eICIC
parameters in real-time, during the operation of the network.

Another limitation of previous works is that their approaches
rely on mathematical models of the network [3], [6], [12]–[14].
In general, even the most complex network models may not
comprise all the relevant aspects of a real operating network.
In contrast to previous works, our approach is data-driven in-
stead of model-driven. Thus, it operates without making any
assumption about the network.

As a part of our proposal, we propose a novel Multi-armed
bandit (MAB) algorithm for a balanced exploration/exploitation
decision making in eICIC parameter configuration. The objec-
tive of MAB algorithms is to maximize an expected reward
over time, given a set of actions whose individual rewards are
initially unknown and possibly random (as in our case). Our
proposal is capable of adapting to variable network conditions,
continuously adjusting the eICIC parameters to configurations
that are efficient in the current conditions.

Finally, we evaluate our proposal against two families of
benchmark online algorithms: stochastic gradient ascent (SGA)
algorithms and MAB algorithms. We consider two settings:
stationary and variable conditions in the network.

The rest of the paper is organized as follows. In Section II
the related work and contribution summary are given. In
Section III we describe the proposed big data framework and
detail the eICIC configuration parameters. The network model
and the formulation of the problem are given in Section IV. In
Section V we describe the proposed mechanism. The benchmark
algorithms are described in Section VI. Finally, the numerical
results are given in Section VII and the conclusions are summa-
rized in Section VIII.

II. RELATED WORK AND CONTRIBUTION

A. Related Work

With recent advances in big data analytics, data-based cellular
network optimization has attracted the attention of the scientific
community [1], [2], [19]. The authors in [1] propose a frame-
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TABLE I
COMPARISON OF RELATED WORKS

(O): Optimization, (H): heuristic, (L): learning.

work for big data-driven mobile network optimization and also
suggest that it can be used for interference management.

Some works like [4], [8], [18] address this problem using
learning algorithms. The authors in [8] use a reinforcement
learning (RL) approach, specifically a fuzzy Q-learning algo-
rithm, to learn the optimal ABS ratio considering a fixed CRE
bias. In [4], Q-learning algorithms are also proposed for ABS ra-
tio and CRE bias learning. However, in [4], [8] the learning algo-
rithms are applied to static network situation, i.e., constant traffic
intensity and UEs with fixed locations. In contrast, in [18] and
our work, the variable nature of the network is considered. The
main issue with RL approaches is that they require offline train-
ing before operating in the network [18]. This training is usually
carried out in a network simulator introducing the additional re-
quirement of reproducing the network in a simulator model. If
the simulator model is not accurate the RL policies may be in-
efficient in practice. In contrast, our proposal operates without
offline training or any previous knowledge about the network.

Most related works address a static network situation [3]–
[11], not considering explicitly the real-time adaption to a dy-
namic network conditions. Although some works consider the
dynamic nature of the network [13], [15]–[17], they differ from
ours in the following aspects: First, the authors of [15]–[17]
propose a heuristic approach which is scenario dependent. For
example, in [15] they assume the use of Proportional Fair (PF)
scheduling in the HetNet using the PF metric as a basic element
of the heuristic. Second, the approaches proposed in [13], [15],
[16] only configure the ABS ratio ignoring that both ABS ratio
and CRE bias have a joint impact in the performance metric
[17]. In contrast, our proposal is able to jointly configure these
two parameters regardless of the particular scenario, only using
data retrieved from the network.

Let us discuss the difference between model-driven schemes
and our data-driven, model-free approach. Model-driven ap-
proaches (e.g., [3], [6], [12]–[14]) need to collect key parame-
ters from the network (such as the location of all UEs or channel
gains) to feed the model which necessarily contains assumptions
and/or simplifications of the real network making it suitable for
an optimization algorithm. However, the optimal configuration
for the model might not necessarily be the optimal configuration
of the real network due to the simplification and/or assumptions
in the network model. In contrast, a data-driven approach re-
lies on direct observations of the network performance obtained
from the real network (without assumption or simplifications).
This allows the decision algorithm to explore configurations
aiming at finding the most efficient ones. For example, the
scheme in [12] aims at optimizing a weighted sum of the log-
arithms of the user throughputs. The algorithm parameters are
the interference graph of the network and the data rates that
each user u would obtain if attached to the nearest macro station
(rm

u ) of to the nearest pico station (rp
u ). The associated signaling

overhead of this scheme is higher than ours, but the main draw-
back is the implicit assumption of considering these data rates,

TABLE II
SIMULATION MODEL COMPARISON IN RELATED WORKS

(rm
u , rp

u ) independent of the eICIC configuration. Note that this
assumption is a simplification/approximation, since the rate at
each UE is determined by the SINR, which, in turn, depends
on the eICIC configuration, and therefore rm

u and rp
u cannot be

accurately known a priori. This assumption, among others, is
useful in setting up a convex problem, but may imply that the
optimal configuration for this model does not match the opti-
mal configuration of the real system, especially if the desired
performance metric is not captured by the objective function.
In the numerical results of that paper it is shown that the 5th
percentile throughput of some fixed configurations is practically
equal to the proposed algorithm, which suggests that a search
over the configuration set (as the one proposed in our paper)
would eventually find a configuration at least as good as the one
found by this algorithm.

Some works like [20], [21] address the problem using stochas-
tic geometry. This approach models the location of macro eNBs
as a homogeneous poisson point process (PPP). It implies that
the location of each macro eNB does not depend on others. In
a real network the deployment of each macro eNB is generally
planed and depends on the position of the surrounding macro
eNB, the terrain, attenuation profile, etc. The authors in [20] also
assume Round Robin as a scheduling policy, not appropriate for
HetNets. In contrast, our mechanism relies on real data from
the operating network avoiding the simplifications introduced
by mathematical models.

Finally, our proposal also differs from previous works in terms
of computation and signaling overhead, not imposing a notice-
able burden in any of them. For example, the algorithm in [12]
requires information about network topology and also computes
at each iteration the following data: the data-rate achievable by
each UE if it were connected to best macro, the data-rate achiev-
able by each UE if it were connected to best pico in ABS and
non-ABS subframe and the mean throughput of each UE. In a
similar way, [3] and [22] require the interference graph of the
network to operate.

We provide a detailed comparison between our work and
related works in Tables I and II.

B. Contribution

The first contribution of this paper is to present a specific
application of the general idea of data-driven network manage-
ment, described in [1], [23], as a proof-of-concept. We show
how this approach can be applied to the dynamic configuration
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Fig. 1. Illustration of the big data-driven framework. Data Collector and
Processor processes the raw data from the network. DDeC uses the processed
data to learn efficient configurations of the interference coordination parameters
to be used in the HetNet. The new configurations provided by DDeC affect the
raw data used as feedback, an so forth.

of eICIC parameters in HetNets in our proposed mechanism:
the Data-Driven eICIC Configurator (DDeC).

Our proposal finds efficient configurations of the eICIC pa-
rameters using only data retrieved from the network. This data-
driven nature provides two main benefits to DDeC with respect
to previous approaches: first, DDeC can operate without any
previous knowledge of the underlying network (e.g. topology,
scheduling algorithms); second, DDeC can optimize any mea-
surable performance metric, even those that are analytically
intractable such as the 5th percentile throughput.

DDeC is based on a novel online learning algorithm of the
Multi-Armed Bandit (MAB) type. Compared to previous MAB
algorithms, our proposal comprises the following novelties: 1)
it uses a local exploration strategy which notably increases the
algorithm’s efficiency, 2) it uses only a reduced set of actions
on each learning/decision stage, 3) it can operate under non-
stationary network conditions by means of a novel module that
detects if the optimal action changes. This addresses a major
challenge for online learning algorithms. In consequence, our
numerical experiments show that DDeC outperforms previous
proposals. Besides, it does not introduce additional computa-
tional complexity compared to previous approaches.

III. BIG DATA FRAMEWORK AND APPLICATION SCENARIO

A. Big Data Framework

Our proposal is built upon the big data-driven framework pro-
posed in [1] and depicted in Fig. 1. This framework integrates
big data analytics and network optimization with the objective
of improving the user quality of service. It can be applied to
resource management in HetNets such as network planning op-
timization, energy saving, etc. However, our work is, to the best
of our knowledge, the first to apply this framework to interfer-
ence coordination in HetNets.

The framework, adapted to our eICIC functionality, consists
on the following data flow: Data Collector and Processor (DCP)
collects raw data from the network and processes it to obtain
suitable data to feed the DDeC (Data-Driven eICIC Configura-
tor). According to this processed data, DDeC selects the eICIC
configuration for the operating network. This new eICIC config-

uration affects the raw data collected henceforth which is used
as a feedback. The successive iterations of this process allows
DDeC to find efficient configurations.

Regarding the data collection, the raw data is computed at
eNBs and sent to the DCP to be processed. Thus, DCP ob-
tains a network statistic or performance sample from the whole
network.

In our scenario, the time varying nature of the network is
a relevant aspect, since it affects, in general, to the efficiency
of the eICIC configurations. Therefore, DDeC incorporates the
capability of detecting statistical variations in the network condi-
tions, in real time, to enable a fast adaptation of the interference
management configuration.

B. Interference Management in LTE-A: eICIC

The eICIC is an interference management technique defined
by 3GPP in Release 10 (LTE-A) [24] for HetNet environments.
To prevent inter-cell interference, eICIC allows macro eNBs and
pico eNBs to use radio resources in different time periods (sub-
frames). The main features of eICIC are: Cell Range Expansion
(CRE) and Almost Blank Subframe (ABS).

Pico eNBs are intended to enhance the spatial frequency reuse
of the network. However, since the transmission power of macro
eNBs is higher than the transmission power of pico eNBs, a UE
close to a pico eNB could associate with the macro eNB with
high probability, losing the benefits provided by pico eNBs. It
occurs because LTE networks implement association based on
received signal reference power (RSRP), i.e., UEs associate with
the highest reference signal that every cell broadcast. Therefore,
it leads to the underutilization of the pico eNBs and the overload
of the macro eNBs. To cope with that problem, CRE allows the
UE to associate to a pico eNB even when its RSRP is lower
than the RSRP from the macro eNB. For that purpose, the UEs
add the CRE bias to pico RSRPs extending the pico eNBs foot-
print. Thus, the UE associates with the eNB with maximum
(corrected) RSRP. Nevertheless, the UEs located at pico eNB
extended region experience a poor Signal to Interference and
Noise Ratio (SINR) due to the high power received from the
macro eNB.

To alleviate this problem ABS is introduced. It allows the
macro eNBs to mute all data symbols in certain subframes re-
ferred to as Almost Blank Subframes. In these protected sub-
frames the UEs with poor channel conditions can boost its SINR
due to the absence of macro interference in data symbols. Al-
though a LTE frame comprises 10 subframes, the ABS patterns
has a periodicity of 8 subframes. Thus, it is necessary to config-
ure the ratio of protected subframes over conventional subframes
(0/8, . . . , 8/8). We assume ABS ratio mixtures are also possi-
ble (e.g., 2/8, 3/8 with probability 0.5 each) obtaining another
ABS ratio value (e.g., 2.5/8). As a result, the ABS ratio can
take values in [0, 1].

As in [20], [25], [26], we consider synchronized muting and
common CRE bias value.

IV. PROBLEM FORMULATION

A. Network Performance Metric

Consider a network operator who wants to optimize a cer-
tain performance metric F which depends on the interference
coordination parameters of the network. In our scenario, these
parameters are the ABS ratio (γ) and CRE bias (φ). Note that,
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for any configuration x = (γ, φ)T and under stationary network
conditions (i.e., traffic intensity, number of active pico eNBs),
the value of F (x) is a random variable due to the stochastic
nature of the network (i.e., variable UE positions, stochastic
shadow fading).

The performance metric F can be related, for example, to the
physical layer (signal to interference and noise ratio, SINR) or
to upper layers (data throughput). Since a mathematical charac-
terization of F (x) for a real operating network without simpli-
fications is unavailable in general, our approach aims at finding
efficient configuration based on performance observation from
the network. Thus, DCP (Fig. 1) is responsible for processing
the raw data collected from the network in order to obtain an
observation of the random variable F (x) for the configuration
x. We consider DCP as a black box and its operation is out of
the scope of this paper.

Although DDeC operates independently of the selected per-
formance metric F , in our case, we consider the 5th percentile
throughput over the downlink to be the performance metric.
Specifically, F (x) is the MLE estimator (and thus a random
variable) of the 5th percentile throughput using the configura-
tion x. This metric is proposed by the 3GPP [27] to evaluate
the performance of LTE networks using non-full buffer traf-
fic model. In addition, multiple related works [12], [15], [25]
use this metric as well. We define a throughput sample as the
quotient between the size of a downloaded file and the time
needed to download it [27]. The 5th percentile throughput is
defined as the value below which 5 percent of the throughput
samples may be found. Thus, given a set of throughput sam-
ples retrieved under configuration x, we can obtain a sample of
the 5th percentile throughput which is a random variable de-
noted by F (x). The set of values E[F (x)] for all x is referred
to as the system response. Fig. 3 shows an example of sys-
tems response for especific network conditions. Note that when
the network conditions varies, the system response generally
changes.

Regarding the big data-driven framework depicted in Fig. 1,
in our case, the raw data retrieved by DCP are throughput
samples obtained by UEs. Processed data refers to 5th per-
centile throughput samples computed by DCP from throughput
samples.

B. Online Problem Formulation

In this section, we formulate the interference management
problem as an online learning problem. In this type of problem,
in contrast to offline approaches, the algorithm has to select
configurations and sample their performances from the network
as feedback. Since changing the configuration actually affects
the network performance, we face the challenge of selecting
configurations allowing us to infer the system response, while
avoiding poor performing ones. In addition, in our case, we
must face the non-stationarity of the network conditions, which
causes variations in the system response.

The performance samples are obtained in countable time
stages k = 1, 2, . . .. At each stage k a configuration xk

is selected and a performance sample yk = F (xk ) is ob-
tained. The next configuration xk+1 is selected accord-
ing to the knowledge obtained by past samples. All con-
figurations x0 . . . xk should be selected from the set P ={
x = (γ, φ)T : 0 ≤ γ ≤ 1, 0 ≤ φ ≤ φmax

}
.

Fig. 2. Detailed system scheme with DDeC submodules.

The pseudo-regret up to stage k of an algorithm is defined by:

kE[F (x∗)] −
k∑

i=1

E[F (xi)] (1)

where

x∗ = arg max
x∈P

E [F (x)] . (2)

The proposed mechanisms are aimed at minimizing the pseudo-
regret (hereinafter referred to as regret) which is the most used
metric in online settings [28], [29]. Although the problem is
formulated over the continuous set P of configurations, our
proposal addresses it only selecting actions from a discrete set
A as we detail in the next section.

Note that we have defined two performance metrics: first, the
5th percentile throughput (F ) which is the performance metric
that our proposal uses and is obtained directly from the network
data. Second, the regret, which shows how good is an algorithm
in an online setting. The regret is computed from samples of 5th
percentile throughput. Specifically, it captures the accumulated
loss of not selecting the optimal configuration F (x∗) at each
sample, and therefore shows how the algorithm behaves with
respect of the optimal performance. It is worth to remark that,
since the optimal x∗ is unknown in advance the regret cannot
be computed in a real network. However, it can be estimated
by exhaustive search in numerical experiments. We detail in
Section VII-B how we address regret computation.

Note that the optimal configuration x∗ can vary over time
making it more challenging for the algorithms to select efficient
configurations. Nevertheless, since low regret implies that the
loss associated to a suboptimal configuration is also low, the aim
of an online algorithm is to minimize this metric over time. For
that purpose, there is a broad literature about SGA and MAB
algorithms addressing regret minimization in online learning
problems [28], [30]–[35]. The following section presents a novel
mechanism showing a significant improvement with respect to
SGA and MAB state of the art algorithms.

V. MECHANISM DESCRIPTION

This section describes DDeC depicted in Fig. 1 and further
detailed in Fig. 2. This module sends at the beginning of each
stage k the configuration xk to be used in the network. Then, the
network operates with this configuration for the whole duration
of the stage k sending the raw data (in our case throughput sam-
ples) to DCP which processes it in order to obtain a performance
sample yk = F (xk ). This performance sample is sent to DDeC
which uses it to select the next configuration xk+1.

Fig. 3 shows the expectation of F (x) for all x ∈ A (sys-
tem response). We can verify in this figure that the expected
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Fig. 3. Expected value of F (x) for all x ∈ A in a HetNet scenario with 4 pico
eNBs per sector and 75 Mbps of offered traffic per sector.

performance of every action is correlated with the expected per-
formance of the actions of its surrounding, which means that
the region of the optimum configuration can be reached from
any other configuration following a sequence of actions with
strictly increasing performance. This characteristic was veri-
fied in a wide range of scenarios with different configurations
(traffic load, number of pico eNBs, etc.) by means of extensive
simulation and is in line with the results obtained in [20]. Our
proposal exploits this structure in the system response making
local explorations and selecting the best local actions in order to
determine the next set of actions for local exploration. Thus, we
can approach the optimum action quickly and without exploring
all the available actions in A.

DDeC has two objectives: first, to find efficient actions by
exploiting the above described structure of the system response,
and second, to detect changes in the network conditions affect-
ing this response. In order to accomplish these objectives, it is
divided into three submodules: the Action Availability Selector
(AAS), the Multi-Armed Bandit with limited action availability
(MAB-LAA) and the Network Change Detector (NCD). These
three submodules can be seen as three black boxes operating
transparently from the others and only using the input/output
data detailed in Fig. 2. The tasks of each submodule are sum-
marized as follows:

� AAS generates at each stage a discrete set Ak of configu-
rations x (also called actions) that can be selected by our
mechanism.

� MAB-LAA selects which configuration x to use at each
stage from the set of available actions Ak given by AAS.

� Finally, NCD tracks the values of the observations in order
to notify to other submodules when it detects a variation
on the network conditions.

A. Action Availability Selector (AAS)

The aim of AAS submodule is selecting the subset Ak ⊂ A
of actions that can be chosen by our proposal at each stage k,
from the set A of all available actions. The operation of AAS
comprises two periods: search period and exploitation period.
The purpose of the search period is to rapidly approach the
region of the optimal action x∗ from any initial action x0. The
exploitation period performs a fine-tuned action exploration in
the region of x∗ in order to find actions with better performance.

Fig. 4. Example of algorithm evolution from AAS submodule point of view. In
the search period, the set Ai+ 1 is created from the best local action of iteration
i (highlighted in green). Idem for Ai+ 2, created from the best local action of
iteration i + 1 (highlighted in red). The red action is the best local action during
the next m iterations which indicates the beginning of the exploitation period.
The actions remarked with crosses (Aexp) are the available action during the
whole exploitation period.

The search period is divided in iterations. We define an iter-
ation as a set of τ stages where the set of available actions does
not change. Let I i = {i : k ≤ i ≤ k + τ} be the set of τ con-
secutive stages belonging to iteration i. For each iteration, AAS
selects a set of available actions Ai ⊂ A such that Ak = Ai for
all k ∈ I i . Fig. 4 depicts an example of A (all possible actions
with x 2-dimensional) and the evolution of three consecutive
iterations of search period. Note that, for each iteration i, all
actions in the set Ai wrap around the so-called central action
(xi

c). Thus, at first iteration (i = 0), we choose an initial central
action x0

c and 8 additional actions wrapping around x0
c to define

the set A0. The set Ai is selected by AAS which sends it to
MAB-LAA at each stage k.

AAS stores in Y i
x the number of times that each action x ∈

Ai has been selected during the iteration i. At the end of i-th
iteration, MAB-LAA determines the best local action, given by

x̂i = arg max
x∈Ai

Y i
x . (3)

Then, x̂i is used as the central action for next iteration (xi+1
c =

x̂i). The configuration of parameter τ will be discussed later in
Section VII-F.

When the best local action of iteration i matches the current
central action (x̂i = xi

c), the set Ai+1 will contain the same
elements of Ai . The exploitation period starts when the set
of available actions does not change during m ≥ 2 consecu-
tive iterations, that is, xi

c = xi−1
c = . . . = xi−m+1

c (illustrated
in Fig. 4 at iteration i + 2 and in Algorithm 1 from line 16
onwards). Then, a new set of available actions Aexp is used,
containing configurations closer to the last best local action.
Note that Ak = Aexp during the whole exploitation period.

The exploitation period benefit is twofold: (i) the set Aexp is
generated with actions closer to xc , which is the action with the
highest estimated performance so far. This aims at exploring the
optimal region in depth to find actions with higher performance
than xc . (ii) one of the main drawbacks of SGA algorithms is
that they deviate from the optimal region after approaching that
due to stochastic nature of F (x). In contrast, in the exploitation
period of DDeC the set of available actions Aexp remains fixed
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Algorithm 1: AAS framework.

1: Input parameters: x0
c , τ

2: Initialize: k = 0
3: for i = 0, 1, 2, . . . do
4: Generate the set Ai from xi

c
5: Generate the set I i = {i : k ≤ i ≤ k + τ}
6: while k ∈ I i do
7: Ak = Ai

8: Send Ak to MAB-LAA
9: xk is received and sent to the HetNet

10: yk is received and sent to the MAB-LAA
11: Update Y i

x with xk and yk

12: k = k + 1
13: end while
14: Compute x̂i = arg maxx∈Ai Yx

15: xi+1
c = x̂i

16: if xi+1
c = xi−1

c = . . . = xi−m+2
c then

17: Generate the set Aexp from xi+1
c

18: while Notify from NCD is not received do
19: Ak = Aexp

20: Send Ak to MAB-LAA
21: xk is received and sent to the HetNet
22: yk is received and sent to the MAB-LAA
23: Send xk and yk to NCD
24: k = k + 1
25: end while
26: end if
27: end for

until receiving a NCD notification, avoiding the aforementioned
deviation. The operation of the AAS submodule is summarized
in Algorithm 1.

B. Multi-Armed Bandit with Limited Action
Availability (MAB-LAA)

This submodule selects the action xk to use at each stage
k from the set Ak which is provided by AAS submodule at
each stage. Algorithm 2 summarizes the operation of MAB-
LAA submodule. The input parameter n̄ and how the actions are
selected (line 5) are determined by the selected MAB policy.

Although any MAB policy can be used in the MAB-LAA
framework, we use the Thompson sampling normal policy
[30] (described in Section VI-B) because it obtains better per-
formance compared to other MAB policies in our numerical
evaluations.

C. Network Change Detector (NCD)

NCD submodule is responsible for detecting changes in the
system response by using the samples of F (x). This detection is
only active in the exploitation period of AAS. When a change in
the systems response is detected, the submodules AAS and MAB-
LAA are notified by NCD (Fig. 2) and, as a consequence, AAS
switches to search period and MAB-LAA resets its knowledge
about the random variable F (x) for all x. Then, the central
action of the first iteration of AAS is set to the best local action
in the exploitation period.

The notification mechanism of NCD is based on a hypothesis
test which checks if there is a statistically significant change

Algorithm 2: MAB-LAA framework.
1: Input parameters: Ak , n̄
2: for each stage k do
3: Generate the set Aini ⊂ Ak of actions selected less

than n̄ times
4: if Aini is empty then
5: Select an action xk ∈ Ak according to the policy
6: else
7: Select an action xk randomly from the set Aini

8: end if
9: Obtain the observation yk from the configuration xk

10: Update the algorithm knowledge with the values
(xk , yk ).

11: end for

in the samples of F (x) assuming normal distribution of this
random variable. Let Rx be the reference set composed by
the first ν samples obtained in the exploitation period using
the configuration x. Let T x be the temporal set composed by
the last ν samples obtained in the exploitation period using
the configuration x. Note that there is a reference set and a
temporal set for each available action in the exploitation period.
Let us denote by μr

x and μt
x the average of the sets Rx and Tx ,

respectively. A hypothesis test is carried out for each x ∈ Aexp

considering the following null hypothesis:

H0 : μr
x = μt

x ∀x ∈ Aexp (4)

Note that the hypothesis test for action x is performed every
time that ν new observations of action x are taken. In order to
minimize the loss produced by a false positive in the hypothesis
test (false detection of a meaningful change in the network
conditions), we consider that the system response has changed if
5 consecutive tests with significance level equals to 0.01 fail. The
operation of NCD module is detailed in Algorithm 3. Table III
summarizes the most relevant parameters of the proposal.

D. Signaling and Computation Overhead

As we detail at the beginning of this section, the DDeC sends
a configuration xk to the network at each stage k, that is, the
stage duration defines the time period between two consecutive
configurations. Therefore, this is a design decision which has
to be properly tunned according to the change rate of network
conditions.

We define a stage as the time needed to collect enough data
from the network to obtain one 5th percentile throughput sam-
ple. The duration of one stage can be variable depending on
the amount of data generated by the network. Considering that
the number of throughput samples needed by DCP to compute
one 5th percentile throughput sample with statistic guarantee is
fixed, the duration of one stage is a design decision depending
of:

� The time required to obtain a throughput sample. Since the
throughput is defined as the length of the packet divided
by the time required to download it, we have to define the
throughput packet length. For example, given 2 Mbytes
of downloaded data, we obtain either 4 or 20 throughput
samples for a throughput packet length of 0.5 Mbytes or
100 Kbytes, respectively.
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TABLE III
NOTATION TABLE

Algorithm 3: NCD operation.

1: Initial Variables: Rx = ∅, T x = ∅, counts = 0
2: for each stage k do
3: if Exploitation period active then
4: Receive xk ∈ Aexp and yk

5: if length(Rxk ) < ν then
6: Append yk to Rxk

7: else
8: Append yk to T xk

9: if length(T xk ) = ν then
10: if HypothesisTest(Rxk , T xk ) fails then
11: counts = counts + 1
12: else
13: counts = 0
14: end if
15: Empty the set T xk

16: end if
17: if counts = 5 then
18: Send Notification to NCD and MAB-AAS
19: Empty the sets Rx and T x ∀x ∈ Aexp

20: end if
21: end if
22: end if
23: end for

� The traffic intensity. Considering that the network is not
saturated, the more UEs in the network, the more through-
put samples we will get per second.

� The size of the network. Similarly to the previous item,
a larger network contains more UEs which will provide
more throughput samples per second.

Thus, adjusting the throughput packet length as a function of
the current traffic intensity and the network size, the algorithm
can operate at the desired adaptation rate and signaling overhead.

Regarding the size of the network, it is divided into clusters
of several sectors sharing the same ABS pattern (synchronized
muting1). It implies that we only need one control per cluster of
macro eNBs, i.e., we need as many algorithm instances as clus-

1Some previous works [15], [16] have considered unsynchronized muting,
i.e., that the ABS pattern can be different on each macro sector, leading to an
uncertain interference profile, and hence to a more complex resource allocation
problem. Since 3GPP has shown [26] that the use of synchronized muting

ters we have. These clusters have to be defined by the network
operator, grouping together all macro eNBs with homogeneous
(similar) traffic profile, e.g., the city center, the outskirts of the
city, etc. Note that the input of the algorithm is fixed regardless
of the size of the network. Given a fixed input, the number of
operation is always bounded (O(1)). In terms of storage over-
head, our proposal only needs to store three elements for each
configuration in Ai , i.e., a total of 3 · |Ai | scalars, where the
cardinality of Ai is fixed for all i.

VI. BENCHMARK ALGORITHMS

In this section we present the benchmark algorithms used
for a comparative evaluation of our proposal. We consider only
algorithms that, like ours, use an online approach.

When evaluating a benchmark, we replace DDeC module
(Figs. 1 and 2) with the corresponding benchmark algorithm.
Note that the input/output of benchmark algorithms match with
that of DDeC.

A. Stochastic Gradient Ascent (SGA) Algorithms

The operation of a SGA algorithm can be summarized in three
steps: 1) Take performance samples around the current action,
2) compute an estimation of the gradient using these samples, 3)
move to a new location following the direction of the gradient
estimation using the projector operator ΠP over the set P (i.e.,
ΠP(x) returns the configuration in P closest to x).

Algorithm 4 shows the general framework for SGA algo-
rithms. These algorithms consider x to be a continous variable
confined in the set P . Note that the operation of the framework
is divided in iterations denoted by t. Each iteration is composed
of |S(t) | stages where S(t) denotes the set of actions to sample
at iteration t. The differences among the SGA algorithms pre-
sented below are basically two: how the set S(t) is generated
and its size, and how the estimation of the gradient is computed.

One Sample Gradient (OSG) [31] uses an approximation of
the gradient that is computed using a single random performance
sample S(t) = {x(t) + δu(t)} of the metric F , where u(t) is a
random unit vector and δ is a constant determining how far of

implies a significant performance gain over unsynchronized one, we considered
synchronized operation in our simulation scenario.
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Algorithm 4: Stochastic Gradient Ascent Algorithms
Operation.

1: Input parameters: Learning rates ηt , initial point x0
2: for t = 1, 2, . . . do
3: Generate the set of configurations to sample S(t)

4: Obtain the performance samples of the metric F at
S(t)

5: Compute the gradient g̃(t)

6: Update x(t+1) = ΠP(x(t) + ηt g̃
(t))

7: end for

x(t) the observation is taken. Then, the gradient is estimated by

g̃(t) =
2
δ
F (x(t) + δu(t))u(t) . (5)

Multi-Sample Gradient with 2 samples (MSG2) [32] takes
two performance samples S(t) = {x(t) ± δu(t)} and the gradi-
ent is estimated by

g̃(t) =
1
2
(F (x(t) + δu(t)) − F (x(t) − δu(t)))u(t) . (6)

Multi-Sample Gradient with 3 samples (MSG3) [32] con-
sidersS(t) = {x(t) , x(t) + δe1, x

(t) + δe2}where ei are the unit
coordinate axes. The gradient is estimated using

g̃(t) =
1
λ

2∑

i=1

(
F (x(t) + δei) − F (x(t))

)
ei. (7)

Response Surface Methodology (RSM) [33] consid-
ers S(t) = {x(t) , x(t) + (δ1, δ2)T , x(t) + (−δ1, δ2)T , x(t) +
(δ1,−δ2)T , x(t) + (−δ1,−δ2)T }. Using the elements of S(t) ,
we define the following matrices:

W (t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 xT
1

1 xT
2

...
...

1 xT
5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, y(t) =

⎛

⎜
⎜
⎜
⎜
⎝

y1

y2

...

y5

⎞

⎟
⎟
⎟
⎟
⎠

(8)

where yi are the observation corresponding to the point xi . Then,
we estimate the gradient by

g̃(t) =
((

W (t)
)T

W (t)
)−1 (

W (t)
)T

y(t) . (9)

B. Multi-Armed Bandits (MAB) Algorithms

This type of algorithms consider a finite space of actions.
We will use the same discrete set A considered in our proposal.
Algorithm 5 details the general framework of a MAB algorithm.
The differences among the algorithms are the initialization pa-
rameter n̄ and the policy to select the next action. Note that each
iteration of the for loop in Algorithm 5 corresponds to one stage.

ε-greedy policy [34] selects with probability 1 − ε the action
with higher average performance and, with probability ε, a ran-
domly chosen action. The probability ε is a fixed value and the
initialization parameter n̄ = 1.

Similarly, ε-greedy descent policy uses ε = 1/k and ε-
greedy logarithmic descent policy uses ε = 1/log(k) where
k is the number of the current stage.

Algorithm 5: Multi-Armed Bandit Algorithms Operation.
1: Initialization: Select n̄ times each action x ∈ A.
2: for k = 1, 2, . . . do
3: Select an action xk ∈ A according to the policy
4: Obtain the observations yk of the configuration xk

5: Update the algorithm knowledge with the values
(xk , yk ).

6: end for

Fig. 5. Simulated scenario considering 4 pico eNBs per sector (dots) and
highlighting the evaluation sectors (dark grey).

Softmax policy [35] selects each action a with probability
pa = eμa /ξ /

∑
a∈A eμa /ξ where μa is the average performance

for the action a and ξ is a positive real parameter called the
temperature. As a natural improvement of softmax, Softmax
logarithmic descent considers ξ = ξ0/log(k) where k is the
current stage and ξ0 is the initialization value.

UCB (Upper Confidence Bounds) normal policy [28] se-
lects at each stage the action with the higher upper confidence
bound considering that the performance samples are gaussian
distributed with unknown mean and variance. When sampling
an action the estimators of the parameters (mean and variance)
of the distribution of this action are updated.

Thompson sampling normal policy [30] selects the maxi-
mum among the samples drawn from posterior beliefs of the
mean estimator of every action.

For the precise formulation of UCB normal and Thompson
sampling normal consult [28], [30].

VII. NUMERICAL EVALUATION

In this section we compare our proposal against the bench-
mark algorithms both under stationary and variable network
conditions. Moreover, we address the adjustment of the config-
urable parameter τ .

A. Description of the Simulated Scenario

The simulated scenario is based on the 3GPP guidelines for
LTE performance evaluation [27]. The wireless channel is mod-
eled with deterministic pathloss attenuation and random shadow
fading. The simulation layout is shown in Fig. 5, comprising 57
sectorial macro eNBs of 120 degrees (19 macro eNBs), and the
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TABLE IV
SIMULATION PARAMETERS

simulation parameters are shown in Table IV. Several pico eNBs
overlaps each eNB sector (shown as dots in Fig. 5), and pico
eNBs can be (de)activated over time due to, for example, energy
saving mechanisms.

The simulations are executed for the central 21 sectorial
macro eNBs (dark grey zone in Fig. 5), while the rest of macro
eNBs emulate the interference of a larger network. The total
interference at each UE receiver is the aggregation of all inter-
fering eNBs in the sector (macro and picos) plus the interference
from the four nearest sectorial macro eNBs.

In the simulation, UEs arrive following a Poisson process
of rate λ arrivals per second on each sector. When considering
dynamical network conditions, λ varies during simulation time.
According to the 3GPP FTP traffic model [27], each incoming
UE downloads one file, and then leaves the network. In addition,
each UE is dropped uniformly over the macro eNB coverage
area with probability 1

3 , or over a pico eNB coverage area with
probability 2

3 .

B. Evaluation Procedure

In order to evaluate the algorithms, we follow the next
procedure:

� First, the associated performance F (x) is evaluated for
each configuration x ∈ A. We consider that the set A has
a total of 285 components, as a consequence of the com-
bination of 15 and 19 values for γ and φ, respectively.
Evaluation is performed by Monte Carlo, running 40 trials
for each configuration.

� A Normal distribution is assumed to characterize F (x)
at each point x. Its mean μF (x) and variance σ2

F (x) are
obtained from their MSE estimators from the samples ob-
tained above.

� For configurations x outside the set A, mean and variance
are approximated by the MSE polynomial fits of degree 4
to the results obtained in the previous step. Henceforth, let
Pμ and Pσ2 denote these polynomial fits.

� The optimal configuration is determined as point x∗

(see2) maximizing Pμ.

2x∗ is determined to allow regret computation within the simulator, but it is
not required in a real operating network.

� Then, to evaluate performance for a given algo-
rithm, the states trajectory x1, x2, . . . , xk , . . . is deter-
mined by: (i) sampling the Gaussian process F (xk ) ∼
N(Pμ(xk ), Pσ(xk )) to obtain sample yk , (ii) determining
xk+1 from xk and yk following the corresponding algo-
rithm. For each stage k, the regret is updated by adding
Pμ(x∗) − Pμ(xk ). The total regret is computed by per-
forming 5 independent trajectory runs each comprising
5000 stages.

C. Stationary Network Conditions

In this setup we assume that network conditions (traffic in-
tensity and number of active pico eNBs) do not change during
evaluation, but UE generation is still a stochastic process as
described above. Besides, initial state x1 is set (1.5, 1.5).

To optimize performance, SGA algorithms have been config-
ured with a decreasing step-size following the function c/

√
k,

where c is a constant and k is the current stage. The value of c
has been set to minimize the regret in Scenario 2, and has been
obtained by exhaustive simulation. Moreover, for all algorithms
δ = 1 except RSM, which uses δ = 0.25.

Regarding the configurable parameters of the MAB algo-
rithms, ε-greedy is configured with ε = 0.15, softmax with
ξ = 0.005, softmax logarithmic descent with ξ0 = 1 and
Thompson Sampling with uniform prior for σ [30]. Our pro-
posal is evaluated considering a fixed m = 4 and the best value
of τ obtained by exhaustive simulation for each scenario.

At this point, we want to highlight the importance of the re-
gret in an online setting. The regret accumulates, at each stage,
the distance from the expected performance of the current ac-
tion to the expected performance of the best action (1). That
is, the farther from the best performance, the higher the re-
gret is. Besides, this metric gives us information about some-
thing similar to the convergence of the algorithm. Note that we
cannot talk about convergence rigorously in a non-stationary
online setting since the optimal action changes over time. For
this reason, our objective is to be as close as possible to the
optimal action at every stage. It can be seen in the regret:
when the slope of the regret curve is close to zero, the al-
gorithm is very close to the optimum. However, the higher
the regret slope, the larger the distance between the actions



AYALA-ROMERO et al.: DATA-DRIVEN CONFIGURATION OF INTERFERENCE COORDINATION PARAMETERS IN HETNETS 5183

Fig. 6. Numerical evaluation in a network with fixed conditions. Three scenarios and two families of algorithms (SGA and MAB) are considered. (a) Stochastic
gradient ascent algorithms, scenario 1. (b) Multi-armed bandit algorithms, scenario 1. (c) Stochastic gradient ascent algorithms, scenario 2. (d) Multi-armed bandit
algorithms, scenario 2. (e) Stochastic gradient ascent algorithms, scenario 3. (f) Multi-armed bandit algorithms, scenario 3.

selected by an algorithm and the optimal action in terms of
performance.

Fig. 6 shows the numerical results for Scenarios 1, 2 and 3
in term of regret and Fig. 7 shows a trace of the 5th percentile
throughput in Scenario 1. Note that the performance of each
algorithms with respect to others changes depending on evalu-
ated scenario. That is because the system response and its vari-
ance changes with the scenario and therefore the optimal values

of the configuration parameters of each algorithm such as the
step-size, λ, ε, etc. See for example that RSM algorithm is not
the best option in Scenario 1 but its performance increases in
Scenario 3 with respect to the others. Something similar occurs
with the Softmax policy. Finding the optimal parameter configu-
ration for each algorithm in each scenario is a very complicated
task. Even more when we consider a real operating network,
where the scenario (system response) is continuously chang-
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Fig. 7. Numerical evaluation in a network with fixed conditions. Performance in terms of 5th percentile throughput for Scenario 1. (a) Stochastic gradient ascent
algorithms. (b) Multi-armed bandit algorithms.

Fig. 8. Numerical evaluation considering the throughput as the objective performance metric. Performance in terms of regret for Scenario 1. (a) Stochastic
gradient ascent algorithms. (b) Multi-armed bandit algorithms.

ing over time. Therefore, the parameter tunning dependency is
a serious drawback of our benchmarks. In contrast, although
our proposal operates with the optimal value of τ for each sce-
nario, it is highly insensitive to changes in τ , as we discuss in
Section VII-F.

Note that, for MAB algorithms, the simpler policies (ε-greedy
and softmax) obtain better results than sophisticated ones (UCB
normal and Thompson sampling normal) in our setting. In the
case of the UCB Normal policy, it has to explore by definition
each action at least �8log(k)� times at stage k and, given the to-
tal number of actions in our setting (|A| = 285), it behaves like
a random policy. On the other hand, although the Thompson
sampling policy finally finds the region of the optimal con-
figuration (the slope of its regret tends to zero) it takes more
stages than other algorithms. However, ε-greedy descent policy
which is one of the simplest policies, obtains a low regret in all
scenarios.

It is worth highlighting that, although our proposal considers
only a finite set A of configurations, which in general does not
contain x∗, it obtains lower regret than SGA algorithms which
operates over the whole set P and could, in principle, converge
to x∗. In other words, the configurations selected by our proposal
are, in average, closer to the optimum than the configurations
selected by SGA algorithms.

As we claim in Section IV-A, our proposal can operate re-
gardless of the selected performance metric F (x). To illustrate
that, we run our algorithm considering the average throughput
instead of the 5th percentile throughput as our objective perfor-
mance metric. We consider the same configuration parameters
described in this section. Figs. 8 and 9 show the performance in
terms of regret and throughput for Scenario 1, respectively. Note
that, although MAB algorithms show a similar performance
as in Fig. 6, SGA algorithms perform significantly worse. A
parameter tuning of SGA algorithms may increase their
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Fig. 9. Numerical evaluation considering the throughput as the objective performance metric. Performance in terms of throughput for Scenario 1. (a) Stochastic
gradient ascent algorithms. (b) Multi-armed bandit algorithms.

Fig. 10. Numerical evaluation in a network with changing conditions. We switch from Scenario 1 to Scenario 2 at stage 2500. (a) Stochastic gradient ascent
algorithms. (b) Multi-armed bandit algorithms.

performance. However, our proposal obtains always the low-
est regret regardless the scenario and the selected performance
metric without tunning any parameter.

D. Dynamic Network Conditions

In this case, we assume changes in the network conditions in
runtime: We switch from Scenario 1 to Scenario 2 (described in
previous section) at stage 2500. This change would be produced,
for example, by an energy saving mechanism which activates
or deactivates pico eNBs depending on the network load. A dif-
ferent scenario implies, in general, a different system response,
and therefore a change on the region where the most efficient
configurations are located. Consequently, after stage 2500 we
consider the new optimal configuration x∗ in the regret compu-
tation. Regarding parameter configuration of the algorithms, we
consider the same of previous section and ν = 5 for the NCD
submodule.

Fig. 10 shows that our proposal also obtains lower regret than
other algorithms in a dynamic setting. Benchmark algorithms

are not aware of the change in network conditions, which affects
their performance negatively. For example, SGA algorithms di-
minish their step-size at each iteration. This assures convergence
under stationary conditions, but if these conditions undergo a
significant change, the step-size should be restarted. A usual
solution to this issue is to use a fixed step-size which can help
to track the changes in system response, in exchange for worse
performance under stationary conditions.

MAB algorithms are also designed for stationary scenarios,
in which they aim at finding the best performing action based on
the observed history, as this history becomes sufficiently long.
However, when switching from Scenario 1 to Scenario 2, past
history becomes not only irrelevant but misleading for MAB
algorithms, since they keep selecting the arms that were iden-
tified as optimal for Scenario 1 but perform poorly in Scenario
2 [see Fig. 10(b)]. One solution for MAB algorithms is to be
restarted when the network conditions changes, forgetting all the
information collected until this point. It implies that the MAB
initialization phase will select n̄ times all actions in A.
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In contrast, when our proposal detects a change in system re-
sponse using the NCD module, the search period restarts in the
AAS module, which only selects actions nearby the current one.
In order to evaluate the system responsiveness, we measured
empirically the number of stages that NCD needs in average to
detect the variation on the network conditions. For that purpose,
we evaluated multiple simulation runs these three scenarios ob-
taining always similar results, a quick adaption which takes
in average 26 stages. Moreover, the number of false positives
(detect a erroneous change in the scenario) was null in all the
simulations.

E. Comparison to a Model-Driven Approach

The regret of an algorithm essentially gives us the perfor-
mance gap of the algorithm with respect to the best possible
configuration. However, in order to illustrate the benefits of our
model-free approach, we compare our proposal to an existing
model-based scheme: PF-ABS [15]. Table V shows the perfor-
mance values attained by each algorithm in terms of 5th and 50th
percentile throughput in three different scenarios characterized
by the number of pico eNBs per sector (10, 14 and 18). DDeD
outperforms PF-ABS in terms of 5th percentile throughput in
all scenarios, while PF-ABS achieves better results in terms
of 50th percentile throughput only for low density scenarios.
These results are consistent with the fact that DDeC was config-
ured to optimize the 5th percentile throughput, but its optimiza-
tion objective can be changed to other metric (see Section VII-
C). In contrast, PF-ABS is not able to change its optimization
objective.

In addition, PF-ABS assumes PF as a scheduling algorithm
and, using the PF metric, configures the ABS ratio of each eNB.
As a result, PF-ABS uses local configurations. This allows a
distributed implementation but, in general, it tends to perform
worse than global configurations (see Section V-D). In order
to compare both schemes fairly, we show the PF-ABS results
using the optimal CRE bias for each scenario.

We would like to emphasize that our scheme does not nec-
essarily replace model-based approaches. Instead, both ap-
proaches can complement each other. For example, in a plug-
and-play scenario, a model-driven algorithm can be used to find
an efficient configuration given the current network conditions.
Then, our data-driven mechanism can use this configuration as
an initial point to perform a fine parameter tuning and track the
optimal configuration over time.

F. Evaluation of τ Parameter

As discussed in Section V-A, τ balances the accuracy and the
adaption velocity of our algorithm. For example, a large value
of τ implies a more accurate selection of the best local action
but taking more time in each iteration, as a tradeoff.

The optimal value of this parameter (τ ∗) is the one that mini-
mizes the total regret of our proposal and depends on the system
response (network conditions). By simulation, we found that the
values of τ ∗ are 34, 31 and 29 for scenarios 1, 2 and 3, respec-
tively. However, since the system response is a priori unknown
and changes continuously over time, we are no able to find τ ∗ at
every step, specially in a real operating network. For this reason,
we evaluate the average relative loss3 of using τ̄ (the average

3Between configurations using the optimal τ and that using τ̄ .

TABLE V
COMPARISON TO A MODEL-DRIVEN APPROACH

of the optimal values for these tree scenarios) as a fixed value
instead of τ ∗ of each scenario.

Our numerical results show that, although the system re-
sponse and the optimal configuration of the network changes
with network conditions (e.g., traffic load, pico eNB topology),
we can configure our algorithm with τ̄ as a fixed value not
implying noticeable losses (0.0007% per stage).

VIII. CONCLUSION

In this paper, we have presented a Data-Driven eICIC Con-
figurator (DDeC) for interference coordination in HetNets en-
vironments based on a big data-driven framework for network
optimization. It finds efficient configurations of eICIC parame-
ters (ABS ratio and CRE bias) operating without any previous
knowledge of the network (e.g., traffic load, topology, propa-
gation conditions) only using data retrieved from the network.
This data-driven approach allows us to optimize metrics of prac-
tical interest that are analytically intractable, such as 5th per-
centile throughput. Our numerical results show that our proposal
achieves a significant improvement with respect to the state of
the art of SGA and MAB algorithms in networks with both
stationary and variable conditions.
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