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ABSTRACT Energy efficiency in cellular networks has gained great relevance due to the increasing
power supply demands in new generation heterogeneous network (HetNet). On the other hand, interference
coordination is a key aspect in HetNets resource management which directly affects the performance and
energy consumption. Although these two aspect are intertwined, they have been studied separately so far.
In this paper, we address the joint problem of energy saving and interference coordination in HetNets.
We formulate the problem as a finite horizon Markov decision process (MDP) leveraging two facts: the
user traffic demands usually follow periodic patterns, and the knowledge and prediction of network load
is crucial in order to select efficient network configurations. Quality of Service (QoS) in the network is
defined as the ratio of users meeting a requirement specified by the operator, and allows us to account
for a minimum QoS requirement by including a constraint in the formulation of the MDP. To address this
MDP, we propose an approximate dynamic programming (ADP) algorithm which selects energy efficient
farsighted configurations with QoS guarantees achieving near optimal performance. This ADP algorithm is
built upon: 1) the certainty equivalent control principle, which simplifies the complexity of the MDP, and
2) machine learning techniques: a neural network and a polynomial regressor which allow us to predict the
QoS and the consumption of the network in advance.We evaluate our proposal in a LTE-A network simulator
following the 3GPP guidelines, and the results obtained show that a joint control of the energy saving and
interference coordination mechanisms results in a notably performance improvement compared to a disjoint
control, in terms of both energy savings and QoS guarantees. Moreover, our proposal has the advantage of
being adaptable to the operator QoS requirements.

INDEX TERMS Dynamic programming, energy saving, green networking, heterogeneous networks,
interference coordination.

I. INTRODUCTION
One of the most prominent features of 5G networks is
expected to be a dense deployment of small cells to increase
the spatial spectrum reuse [1]. However, small cell densifi-
cation entails two problems: a higher energy consumption
in the access network infrastructure, and an increased inter-
cell interference [2]. These two issues have been addressed
separately before, but they should not be decoupled because
of two reasons: first, the energy savingmechanisms can affect
the interference profile (particularly when these mechanisms
switch base stations on or off). And second, because the
interference coordination mechanism affects the traffic load
and the available spectral resources at each station, which are
aspects that the energy saving policies should consider and
exploit.

This paper addresses energy saving at the base stations and
interference coordination as a joint problem, using a stochas-
tic control approach.We show that, addressing both problems
simultaneously, a considerable improvement in energy saving
is achieved.

Micallef et al. [2] explain that over 80% of the energy
consumed in a mobile network is due to the base sta-
tions. There are, however, two aspects enabling energy
saving strategies: the overlapping coverage areas of many
cells and the variable traffic demands. By exploiting these
aspects, some underutilized cells can be switched off with-
out perceptible degradation on the user QoS. This strat-
egy outperforms other approaches based on transmission
power optimization, which incurs in load-independent energy
consumption [3].
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We consider a heterogeneous network (HetNet) composed
of pico eNBs overlapping the macro eNB coverage area in
each sector. The pico eNBs can be in active or sleeping mode
(on or off), according to the energy saving mechanism, while
the macro eNB is always active. The energy consumption
model in this work is load dependent and considers an activa-
tion cost when a sleeping pico eNB is switched on. We apply
the enhanced Inter Cell Interference Coordination (eICIC)
mechanism defined by the 3GPP for LTE-A Networks [4].
The eICIC parameters are Cell Range Expansion (CRE) bias
and Almost Blank Subframe (ABS) ratio.

We formulate the problem as a finite horizon Markov
Decision Process (MDP) encompassing the daily pattern of
traffic demands [5], [6]. This allows us to capture the vari-
able traffic conditions during each day. However, the use
of this formulation and inserting the eICIC parameters in
the control space increases notably the complexity of the
problem, compared to action spaces restricted to energy
decisions [7], [8].

To address this complex problem, we propose an Approxi-
mate Dynamic Programming (ADP) algorithm that combines
stochastic control and machine learning techniques. It com-
prises an offline phase where the cost-to-go function can
be efficiently estimated from stored network data, and an
online phase, where the algorithm selects, at each decision
stage, efficient farsighted controls (considering their impact
in future decision stages) with QoS guarantees.

The remainder of the paper is organized as follows.
In section II the related work and contribution are discussed.
In section III we describe the power consumption model and
the interference coordination mechanism. The system model
and the formulation of the problem are given in Section IV.
In Section V we describe the proposed mechanism. The
simulation framework and the numerical results are given
in Section VI. Finally, the conclusions are summarized
in Section VII.

II. RELATED WORK AND CONTRIBUTION
A. RELATED WORK
The optimization of energy efficiency decisions in HetNet
has been previously addessed as an stochastic control prob-
lem. The most usual approach is to formulate the problem
as a Markov Decision Process (MDP) including restrictions
that account for the QoS objectives [7], [8], [21] as in
our proposal. The inherent computational complexity of the
MDPs implies the use of ADP approaches like Reinforcement
Learning (RL) [21]. Other works [24] combine game theo-
retic techniques with RL algorithms.

Similarly, the stochastic control approach has also been
used to address interference coordination in heterogeneous
networks [25]–[27]. However, as far as we know, our work
is the first addressing the joint control of energy saving and
interference coordination in HetNets as a stochastic control
problem. The improvement associated to the inclusion of
interference coordination control can be seen in our numer-
ical results in Section VI-D. Previously, Virdis et al. [18]

addressed the energy saving problem in HetNets exploiting
the ABS configuration, which strongly indicates that it has a
significant impact in the power consumption, as our hypoth-
esis. However, user association and eNB on-off switching are
not considered in this work.

A common simplification (e.g. [7], [8], [21]) is to model
the traffic intensity as a homogeneous Markov process.
Nevertheless, real network traces exhibit a daily
pattern [5], [6], [28]. Thus, we aim at exploiting this fact
by formulating a finite horizon MDP with one-day horizon.
This formulation allows us, in contrast to previous works,
to apply the certainty equivalent control (CEC) which is an
approximate dynamic programing technique to approximate
the cost-to-go function with a deterministic model [29].

In order to reduce the problem dimensionality some works
make a compact representation of the state space using a
function approximation [21]. In our case, the control space is
specially large because it comprises not only energy saving
but also interference coordination decisions. For this reason,
we propose to transform the state and control spaces into
reduced dimensional ones achieving a notable reduction of
the computational cost of both offline and online phases.

Other works [9]–[16], [18], [30] address the eNB on-off
switching problem as an optimization problem. Since the
computational complexity of these problems is NP-Hard,
they are addressed using iterative algorithms or decomposit-
ing the problem in relaxed ones aimed at finding opera-
tive (but suboptimal) solutions [31]. An additional issue is
that these solutions have to be recomputed whenever the
state of the network changes (e.g. traffic intensity). In con-
trast, our solution operates for any network state. Some of
the aforementioned works also consider the user associa-
tion [10]–[13], but none of them take into account the inter-
ference management, which is an essential issue in HetNets.

The eNB switching problem has been also addressed using
Stochastic Geometry [17], [19], [20], [32], [33]. However,
this approach implies some simplifications in the network
model (e.g. path loss as a channel model, eNBs deployed
following a Poisson Point Process). In contrast, our proposal
is capable of using real data from the network in both offline
and online phases and does not require any simplification,
neither does assumptions in the network model.

Regarding the power consumption model, some works [5],
[28], [34] consider two values of power consumption (cell
on or off). Other works [7], [21], [32] consider amore detailed
model where the power consumption of a cell depends on its
traffic load. In our work, we consider the load dependent con-
sumption model proposed by the 3GPP [35] with additional
consumption spikes associated to the activation of sleeping
eNBs [6].

B. CONTRIBUTION
The main contributions of this paper are:

• To consider the joint control of energy saving and inter-
ference coordination mechanisms in HetNets leading to
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TABLE 1. Comparison of energy saving related works.

remarkable performance improvement compared to a
disjoint control.

• To formulate the problem as a constrained finite horizon
MDP leveraging two facts: the traffic demands usually
follow periodic patterns, and the knowledge and predic-
tion of network load is crucial in order to select efficient
network configurations.

• To propose an ADP algorithm achieving near optimal
performance in terms of energy consumption and QoS
of the users, reducing energy consumption up to 24%
with respect to a fixed default configuration.

• To build the ADP algorithm using a novel combination
of stochastic control and machine learning techniques.
In particular, we use Certainty Equivalent Control (CEC)
in combination with Neural Networks and polynomial
regression.

III. INTERFERENCE MANAGEMENT AND POWER
CONSUMPTION MODEL
A. INTERFERENCE MANAGEMENT IN LTE-A: eICIC
The eICIC is an interference management mechanism
for heterogeneous networks defined by the 3GPP from
Release 10 (LTE-A) [4]. It schedules the radio resources
for macro and pico eNBs in different time periods (called
subframes) to avoid inter-cell interference. The eICIC com-
prises the following features: Cell Range Expansion (CRE)
and Almost Blank Subframe (ABS).
Pico eNBs are low transmission power cells aimed at

increasing the spatial reuse of radio resources. However,
LTE cell association is based on the received signal refer-
ence power (RSRP), that is, each UE associates with the
highest reference signal received from each cell. Therefore,
UEs located close to a pico could end up associating to
the macro eNB, precluding spatial reuse. For this reason,
CRE allows pico eNBs to extend their footprint by adding
a bias to their RSRP.

An associated issue is that the UEs located at pico eNB
extended region (CRE region) will, in general, have a low
channel quality due to the high interference received from
macro eNB. In order to improve that quality eICIC allows to
mute all data symbol in certain subframes (ABS subframes).
Then, the UEs located at CRE region can be scheduled in
ABS subframes obtaining a higher signal-to-interference-
plus-noise ratio (SINR) due to the absence of interfering

signal from themacro eNB. TheABS pattern has a periodicity
of 8 subframes. We define the ABS ratio as the portion of
muted subframes over conventional ones.

B. ENB POWER CONSUMPTION MODEL
In this section, we describe the eNB consumption model used
in this work. It is based on the 3GPP guidelines [35] and
also includes the consumption associated to the activation of
a sleeping eNB [6].

The eNB transceivers (TRXs) are composed of an
AC-DC unit for main supply, a power amplifier, a cooling
system, a baseband interface (a transmitter for downlink
and a receiver for uplink), a radio frequency small-signal
transceiver section and an antenna interface. The power con-
sumption of some of these components depends on the load of
the eNB. Therefore, a common assumption is to approximate
the relation between RF output power and power consump-
tion of TRXs using a linear model [35]. Then, the power
consumption model of a pico eNB j is given by:

C j
p = ej · NTRX · (P0 + Rj · Pmax)

+ (1− ej) · NTRX · Psleep +1 (1)

1 =


β · P0 when eNB j is switched on from

sleeping mode
0 otherwise

(2)

where:
• ej = 1 when the pico eNB j is active and ej = 0
otherwise.

• NTRX is the number of TRXs.
• Pmax is the maximum RF output.
• P0 represents the power consumption at zero RF output
power.

• Rj ∈ [0, 1] is the load factor of the pico eNB j and
depends on the ABS ratio, the CRE bias, the traffic
intensity and the location of UEs.

• Psleep is the power consumption of TRX components in
sleep mode.

• β is the portion of P0 needed to switch on the pico
eNB TRXs.

Note that1 captures the consumption associated to switch-
ing on a sleeping pico eNB. The power consumption of the
macro eNB i is given by

C i
m = NTRX ·(Pm0 + R

i
·Pmmax) · (1−γ )+ NTRX · Pm0 ·γ (3)
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where γ denotes the ABS ratio, Pmmax is the maximum power
output of the macro eNB and Pm0 is the power consumption at
zero RF output power of the macro eNB. Note that the ABS
ratio, the CRE bias and the activation controls of the eNBs
can affect the load factor Rj of an eNB j, making the global
power consumption in the network an unknown non-convex
function. This motivates the inclusion of these parameters
in the control of energy consumption, as explained in next
Section.

IV. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a sector of a LTE-A access network comprising
a macro eNB and P pico eNBs. Let P = {1, 2, . . . ,P} be the
set of pico eNBs overlapping the macro sector.

The ABS ratio and the CRE bias are denoted by γ ∈ 0
and φ ∈ 8, where 0 and 8 are the finite sets of all possible
configurations of these parameters. Time is divided into dis-
crete time stages k ∈ {0, 1, . . .}. At each stage, the decision
maker must select the values for γ , φ and the activation state
of the pico eNBs in P . This sequential decision procedure is
modeled by a Markov Decision Processes characterized by
the following elements:
1) States: Let ejk be the state of the pico eNB j ∈ P at

stage k , where ejk = 1 when the pico eNB j is switched on
and ejk = 0 otherwise. The vector pk = (e1k , . . . , e

P
k ) ∈ E

(E = {0, 1}P) denotes the activation state of all picos in P .
Let λk ∈ 3 refer to the mean number of UEs in the sector
(traffic load) at stage k , where 3 = [0, λmax]. The state of
the system at stage k is given by xk = (λk , pk−1) ∈ X , where
X = 3× E is the state space. Thus, the state of the system is
defined by the traffic load at current stage and the activation
state of the pico eNBs in P established in the previous stage.
2) Controls: At the beginning of each stage, the decision

maker observes xk and makes a decision regarding which
stations are switched on and off, as well as the values of γ
and φ to be used during stage k . These decisions define the
control uk = (pk , γk , φk ) ∈ U , where U = E × 0 ×8 is the
control space.
3) State transitions: The state of the system at next stage is

given by xk+1 = fk (xk , uk ), where fk is a function defining the
stochastic state transition. In our case, the state transition can
be written as follows: xk+1 = (λk+1, pk ), where the random
variable λk+1 entails the stochastic nature of state transition.
Fig. 1 depicts the system state transition.
4) Payoff functions: We define two global payoff func-

tions: C : X × U → R+ providing the aggregated power
consumption in the network and Q : X × U → [0, 1]
which gives us the ratio of UEs in the network satisfying the
QoS requirement specified by operator. In particular, the QoS
requirement considered is the UE throughput being greater
than a given (specified) threshold. Therefore, the QoS func-
tion indicates the ratio of UEs whose throughput is greater
than the specified threshold. Note that C and Q are random
since they depend on the random UE locations and traffic
demands.

FIGURE 1. Scheme of system state transition where crosses indicate the
beginning of each stage.

B. FINITE-HORIZON DP PROBLEM FORMULATION
It has been widely reported that data traffic in a cellular
network presents a periodic pattern [5], [6], [28], according to
which the average traffic load can be described by a periodic
function with a one-day period length. We leverage this fact
by formulating the problem as a finite-horizon MDP where
the length of the horizon is one day. We divide the day into
N discrete time stages k = 0, 1, . . . ,N − 1. An action uk
is selected for each state xk for each k = 1, . . . ,N − 1.
Then, at the end of the N stages, we use the boundary control
uN = (pN , γN , φN ) for resetting the process to an initial state
x0 = (λ0, pN ).

The mapping πk : X → U , determines the action uk at
stage k given the current state xk . A policy for the finite-
horizonMDP is given by π = {π0, . . . , πN−1}. The objective
is to find the optimal policy π∗ minimizing the expected
accumulated consumption over the N stages and satisfying
the QoS constraint at every stage:

π∗= argmin
{π0,...,πN−1}

E

{
C(xN , uN )+

N−1∑
k=0

C(λk , pk−1, πk (xk ))

}
s.t. E {Q(λk , πk (xk ))} > Qmin for k = 0, . . . ,N − 1

(4)

whereQmin defines the QoS requirement andC(xN , uN ) is the
consumption associated to resetting the system for the next
day using the boundary control uN .
Let Jk (xk ) be the cost-to-go which indicates the minimal

consumption of the system from stage k to the final stage N ,
provided that, at stage k , the system is in state xk and consid-
ering that the QoS requirement is met at every stage.

JN (xN ) = E {C(xN , uN )}

Jk (xk ) = min
uk∈U

E {C(xk , uk )+ Jk+1(fk (xk , uk ))}

s.t. E {Q(xk , uk )} > Qmin for k = 0, . . . ,N − 1

(5)

The computational overhead associated to the computation
of the cost-to-go may be prohibitively large. The reason is
twofold: first, the dimensions ofX and U grow exponentially
with the size of P , which also limits the scalability of the
problem. Second, the stochastic nature of state transition
makes it necessary to compute, for each stage k , the prob-
ability of all possible traffic intensities λk+1 at next stage.
Specifically, considering3 as a finite set of traffic intensities,
the cost-to-go function consists ofN ·|3|·2P values. To obtain
each of these values, we need to compute the expected values
of the consumption and the QoS for each of the 2P · |0| · |8|
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FIGURE 2. Scheme of the online operation of our proposal.

controls in U . Note that 3 has been defined as a continuous
set in Sec. IV-A. In this case, the cost-to-go is be a continuous
function for each value of k . In the next section we present our
proposal aimed at avoiding these problems.

V. PROPOSED CONTROL SCHEME
Our proposal to address problem (4) in a computationally
feasible manner, comprises the combination of the following
techniques: first, we make use of the Certainty Equivalent
Control (CEC) principle to reduce the complexity associ-
ated to the stochastic nature of the state transitions. Second,
we transform the state and control spaces into a reduced
dimensional ones. Third, we use a machine learning approach
to infer instant power consumption and to evaluate QoS con-
straint satisfaction.

In the offline phase we obtain an estimator for the con-
sumption, C̃ , and an estimator of the QoS, Q̃. These estima-
tors should be trained offline with a data set comprising user
performance samples and network energy consumption for
diverse states and configurations of the system. This data set
can be readily available to networks operators from the real
network, testbeds and/or simulation. Using the estimators C̃
and Q̃ and the CEC principle (Sec. V-A), the estimation of the
Cost-to-go function J̃ is computed (Sec. V-D).

Fig. 2 shows the operation of the online phase where the
ADP algorithm entity controls a cluster comprising M sec-
tors. The ADP algorithm receives the system state xk at each
stage and, using C̃ , Q̃ and J̃ , computes the dimensionally-
reduced global control u′k which is sent to the Control Space
Augmentors (CSAs) (Sec. V-B). The i-th CSA (correspond-
ing to the i-th sector) computes the full-dimensional control
uik from u′k using the specific information about the network
topology of the i-th sector. Each sector i operates during
the stage k using the control uik computed by its corre-
sponding CSA. This semi-distributed approach reduces the
dimensionality of state/control spaces, simplifying notably
the computational complexity of the problem. For the sake of
simplicity in the notation, we formulate the problem for only

one sector. Note that, while the offline phase is performed
once, the online phase is continuously executed in a stage by
stage basis. The following subsections describe and discuss
the elements of our proposal in detail.

A. CERTAINTY EQUIVALENT CONTROL (CEC)
The Certainty Equivalent Control (CEC) is an approximated
control scheme that applies at each stage the control that
would be optimal if the uncertain quantities were fixed to their
expected values [29]. CEC differs from exact dynamic pro-
gramming in the following aspects: the cost-to-go Jk+1(xk+1)
is replaced by its estimation J̃k+1(xk+1), and the uncertain
quantities are replaced with their expected values. Specifi-
cally, we replace the traffic intensity at each stage k , λk , with
its expected value λ̄k ∈ 3̄, where 3̄ is a finite set whose
cardinality is |3̄| = N (it contains one expected value for
each decision stage).

Therefore, considering λ̄k at each stage k , the state transi-
tions are now deterministic xk+1 = (λ̄k+1, pk ), since λ̄k+1 is
known in advance and pk is provided by the control uk .

The objective is to find the control that minimizes the sum
of the expected power consumption at current stage and the
cost-to-go estimation while satisfying the QoS requirement at
each stage:

uk = argmin
u∈U

E[C(xk , u)]+ J̃k+1(λ̄k+1, u)

s.t. E[Q(xk , u)] > Qmin for k = 0, 1, . . . ,N − 1. (6)

Note that this minimization is performed at each stage,
while the network operates (this is referred to as online
operation). Then, given the observed current state xk , we need
to predict the expectation of the energy consumption for all
feasible controls: E[C(xk , u)] ∀u ∈ {u : E[Q(xk , u)] >
Qmin}, which is addressed later in this Section. Note at this
point that the computational cost associated to solve (6)
depends on |U |. For this reason, we propose a state/control
space transformation to make the problem computationally
feasible.

B. STATE/CONTROL SPACE TRANSFORMATION
The possible values of the vector p (which indicates the
activation state of each pico inP) increase exponentially with
P: |E | = 2P. This section describes a strategy to reduce
the relationship between P and state/control spaces from
exponential to linear. We define p′ = 5(p) as the linear
transformation of the parameter pwhere5(x) =

∑
i xi. Thus,

p′ ∈ E ′ where |E ′| = P + 1. Let u′ = (p′, γ, φ) ∈ U ′
denote a transformed control, where U ′ = E ′ × 0 × 8.
This dimensionally-reduced control will use in next sections
to define the estimation of the cost-to-go function and the
online operation of our proposal. Although the transformation
U → U ′ is straightforward, it must be undone in the last
step of our algorithm (Fig. 2). CSA entities are in charge of
reversing the transformation (U ′ → U). In the reminder of
this section we detail the procedure implemented by CSAs.
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FIGURE 3. Neural network Architecture where the inputs are the traffic
load λ and a control u′ , i.e., a = (λ,u′).

We define the cell adjacency value d j associated to a
pico eNB j ∈ P as a weighted average of the distances to
the remaining eNBs in the sector:

d j = w · d jm + (1− w) · d jp (7)

where d jm is the distance to the macro eNB, d jp is the aver-
age distance to the rest of the pico eNBs in the sector and
w ∈ [0, 1] is a weighting factor. Let D = {d i}i∈P be the
set containing the cell adjacency values of all pico eNBs
in P . The higher the value of the cell adjacency, the higher
the priority of a pico eNB to be switched off. Therefore,
the transformation can reverted (p′ → p), by computing the
values of each element ej of p as follows:

ei =

{
1 if i ∈ Iwhere I = Mp′ (D)
0 otherwise

(8)

where the operatorMp′ (D) returns the indexes of the p′ great-
est values in D, i.e., the indexes of the p′ pico eNBs with the
greatest values of cell adjacency.

The idea behind this approach is the following. The cell
adjacency value of a pico eNB indicates its closeness to the
rest of the eNBs in the sector. Thus, our strategy consists
on switching off firstly the eNBs with lower values of cell
adjacency, that is, the eNBs with more eNBs in their sur-
roundings because they can offload their traffic to near eNBs
(macro or picos) incurring lower losses in the channel quality.
We evaluate this strategy in Section VI.

C. MACHINE LEARNING FOR ENERGY CONSUMPTION
AND QoS ESTIMATION
We define C̃ : 3 × U ′ → R as an estimator of the expected
aggregated power consumption. The estimator C̃ is based on
a polynomial regression model of the relation between the
input variables (the system state and the selected control) and
output variable (the observed power consumption). We eval-
uated polynomials of several degrees ranging from 1 to 9,
using two data sets, one for training the model and other for
testing its estimation accuracy. In these experiments, degree
6 polynomials obtained the minimum Root Mean Squared
Error (RSME) in the test data set.

Let Q̃ : 3 × U ′ → {0, 1} be a classifier estimator
indicating whether the current expected QoS is above the
defined threshold Qmin (Q̃(λ, u′) = 1) or not (Q̃(λ, u′) = 0).
The function Q̃ is implemented using a neural network (NN)
whose architecture is shown in Figure 3. The number of nodes
in the hidden layers are H1 = H2 = 50. A rectified linear
unit (ReLU) is used as a nonlinear activation function in
both hidden layers and we use a sigmoid activation function
in the output layer. This neural network is trained using
the gradient-based algorithm in [36] to minimize the cross-
entropy cost function. The NNwas trained during 400 epochs
with a learning-rate equal to 0.001, using data previously
gathered from the network. The data set used to train both
models consists of 23000 samples of power consumption and
QoS obtained by simulation.

D. COST-TO-GO ESTIMATION
In this section, we address the cost-to-go estimation presented
in equations (6). First, we need to introduce some notation.
Let x̄k = (λ̄k , p′k−1) ∈ X̄ be a transformed CEC state value,
where X̄ = 3̄ × E ′. We define 1′ : X̄ × U ′ → R as the
function providing the power consumption associated to the
activation of the pico eNBs. According to (2):

1′(x̄k , u′) = β · P0 ·max(0, p′k − p
′

k−1) (9)

The estimation of the cost-to-go at stage k is defined as
follows:

J̃N (x̄N ) = 1′(x̄N , u′N )

J̃k (x̄k ) = min
u′k∈U

′

C̃(λ̄k , u′k )+1
′(x̄k , u′k )+ J̃k+1(f̄ (x̄k , u

′
k ))

s.t. Q̃(λ̄k , u′k ) = 1 for k = 0, 1, . . . ,N−1. (10)

where f̄k is the function defining the state transitions which
are now deterministic and J̃N (x̄N , uN ) correspond to the
power consumption associated to the activation of the pico
eNBs at the initial stage of the next day.

We summarize the offline phase as follows:
1) Retrieve the data set from the network whose j-th sam-

ple is
(
xj, uj,C(xj, uj),Q(xj, uj)

)
.

2) Train the estimators C̃ and Q̃ according to the proce-
dure detailed in Sec. V-C.

3) Compute J̃ using (10).

E. ONLINE OPERATION
In the online phase, we select the control u′k for each stage k
minimizing the power consumption afterwards and satisfying
the QoS constraint, given the current state xk observed from
the network, i.e.,

u′k ∈ argmin
u′∈U ′

C̃(xk , u′)+1′(xk , u′)+ J̃k+1(λ̄k+1, u′)

s.t. Q̃(λk , u′) = 1 for k = 0, 1, . . . ,N − 1. (11)

The online phase is summarized in Algorithm 1. It shows
the operation of our proposal from a high-level point of view
during one day. Steps 3, 4 and 5 in Alg. 1 are executed
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TABLE 2. Notation table.

once per stage. Note that the computational complexity of
solving (11) only depends on the size of U ′, independently
of the size of the network. This means that the computational
complexity per stage in the online phase is O(1). That is,
our proposal can be applied to an arbitrarily large network
without increasing the computational complexity, only by
replicating the instances of the ADP algorithm.

We propose to group the sectors in clusters characterized
by a similar traffic profile (e.g. city center, business area).
Thus, one ADP controller can be assigned to each cluster to
cover the whole network. In other words, we need as many
instances of the ADP algorithm as clusters of sectors in the
network. Table 2 summarizes the notation in this paper.

Algorithm 1 Online Phase (ADP Algorithm Operation)
1: for k = 0, 1, . . . ,N − 1 do
2: Receive the network state xk
3: Compute u′k using (11)
4: Send u′k to CSAs
5: end for

VI. NUMERICAL RESULTS
A. DESCRIPTION OF THE SIMULATION FRAMEWORK
The network layout is based on the 3GPP guidelines for
evaluation of LTE networks [37]. It consists of 5 sectorial
macro eNBs (120 degrees) and several pico eNBs overlap-
ping each macro eNB coverage area (Figure 4). We simulate
the central sector (shadowed in Figure 4) and the rest of
macro eNBs emulate the aggregated interference of a larger
network. The wireless channel comprises two components:
the deterministic pathloss and the stochastic shadow fading.

FIGURE 4. Illustration of the simulated scenario with the simulated
(shadowed) sector and four sectorial macro eNBs used to compute the
aggregated interference, emulating the effect of a larger network.

FIGURE 5. One day traffic pattern. The black line corresponds to the
average traffic values and the blue line is a random traffic obtained
from the mean values.

The aggregated interference at each UE receiver consists of
the power received from all interfering eNBs in the sector
(picos and macro) plus the interference from the macro eNBs
from other sectors. Fig. 5 shows, for one simulation run,
the average traffic load following a daily periodic pattern,
and the per-stage traffic load randomly generated from this
pattern.

A throughput sample is defined, according to the 3GPP
guidelines [37], as the quotient between the size of a down-
loaded file and the time required to download it. Each UE has
to download one file, and therefore generates one throughput
sample. We consider that a UE fulfills the QoS requirement
if its throughput is over Tmin = 100 kbps. In our simula-
tions, the QoS function Q provides the expected ratio of UEs
satisfying Tmin. The power consumption model is defined in
Section III-B and its parameter configuration [35] is shown
in Table 3.

We consider an horizon of N = 24 stages, corresponding
to the hours of the day. For each stage, we perform 60 evalu-
ations of 100 LTE frames with varying traffic corresponding
to each minute within the hour. At each minute, we generate
the traffic load according to a Poisson process whose mean
is given by the average traffic profile shown in Fig. 5. Each
UE is dropped uniformly over the macro eNB coverage area

71116 VOLUME 6, 2018



J. A. Ayala-Romero et al.: Energy Saving and Interference Coordination in HetNets Using Dynamic Programming and CEC

TABLE 3. Simulation parameters.

FIGURE 6. Performance of the switching on-off policies in terms of QoS
for different numbers of active pico eNBs.

with probability 1
3 , or over a pico eNB coverage area with

probability 2
3 .

Regarding the interference coordination controls, we con-
sider 0 = {0, 18 ,

2
8 , . . . ,

7
8 } and 8 = {0, 6, 9, 12, 18}. The

number of pico eNBs per sector is P = 6. The rest of the
simulation parameters are shown in Table 3.

B. EVALUATION OF CSA STRATEGY
In this subsection we evaluate the losses associated with
the state/control space transformation. In order to revert the
transformation, the eNBs with lower adjacency values are
switched off firstly, as explained in Sec. V-B.We compare the
proposed strategy with other alternative strategies, including
the optimal one. We consider for this evaluation P = 6,
γ = 6/8 and φ = 6 dBs.

FIGURE 7. Performance of the switching on-off policies in terms of 5th

percentile throughput for different numbers of active pico eNBs.

Figures 6 and 7 show the performance in terms of QoS and
5th percentile throughput [37] of the following policies:

• Cell adjacency order: eNBs with lower values of cell
adjacency are deactivated firstly.

• Cell adjacency reverse order: eNBs with higher values
of cell adjacency are deactivated firstly.

• Optimum case: We select the best of the P! possible
orderings of P pico eNBs in the sector.

• Worst case: We select the worst of the P! possible order-
ings of P pico eNBs in the sector.

Both figures show that Cell Adjacency Order performs sim-
ilarly to the optimal policy. We performed the simulations
of our proposed policy for different values of the weighting
parameter w ranging from 0 to 1. The best performing value
was 0.4, which is the one used in the following results.
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FIGURE 8. Selected control u′ at each hour for Qmin = 0.6 under the
different policies.

C. EVALUATION OF ESTIMATORS PERFORMANCE
The estimators C̃ and Q̃ are obtained in the offline phase.
These estimators are used firstly in the computation of the
cost-to-go function, and then in the control selection dur-
ing the online operation (11). The error incurred by these
estimators may affect the final performance of our ADP
algorithm. For example, if a control u′ and a traffic λ are
misclassified as meeting the QoS constraint (Q(λk , u′) = 1),
the control u′ could be selected under traffic λ, resulting in a
non-fulfillment of the QoS requirement in this stage.

We evaluate the errors of the estimators against the avail-
able data in the offline phase. That is, we have computed the
estimators C̃ and Q̃ for training sets of different sizes, ranging
from 50 to 23000 samples. For all the obtained estimators,
their errors are estimated using the same test set. This way,
we obtain better quality estimators as the size of the training
set increases. For the polynomial regressor C̃ , we evaluate
the RMS error, and for the classifier Q̃, we evaluate the
accuracy (ratio of correct classifications), and the ratio of
type I and type II errors. Table 4 summarizes the results
of these evaluations and the performance of the proposed
ADP algorithm in terms of daily energy consumption and
QoS satisfaction when using these estimators.

D. COMPARATIVE EVALUATION OF THE ADP ALGORITHM
In our numerical evaluation we compare the following
policies:

• Our proposed ADP algorithm controlling the Energy
Saving (ES) and the Interference Coordination (IC)
mechanisms (ADP ESIC).

• Our proposal, but only controlling the ES mechanism
(ADP ES).

• A default network configuration where ES and ICmech-
anisms are not operative.

• AnOracle policy which minimizes the overall daily con-
sumption satisfying the QoS requirement at every stage.

FIGURE 9. Comparison of the aggregated instantaneous power
consumption at each hour for Qmin = 0.6 under different policies.

FIGURE 10. Ratio of UEs satisfying the minimum throughput Tmin at each
hour for Qmin = 0.6.

This policy has been computed by means of exhaustive
search over the possible controls at each stage.

• An Oracle policy (Oracle ES) which, as ADP ES,
only controls the ES mechanism. This policy is an
upper bound of previous works that only consider the
ES scheme.

Fig. 8 shows the controls selected by each policy at each
hour (decision stage) for a threshold Qmin = 0.6. Fig. 9
shows the aggregated power consumption at each stage, i.e.
the consumption of all the eNBs within the sector. Fig. 10
shows the QoS observed at each step, i.e. the portion of total
UEs in the sector satisfying Tmin.

ADP ESIC uses, in most stages, fewer pico eNBs than
ADP ES, as Fig. 8 shows, implying significant energy sav-
ings. The use of IC makes it possible to satisfy the QoS
threshold using fewer pico eNBs. Specifically, the Oracle,
ADP ESIC and ADP ES policies attain an energy saving
with respect to the default configuration of 26.79%, 24.07%
and 10.96%, respectively.
Note that the QoS threshold balances power consumption

and QoS. If we impose a higher QoS threshold, more active
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TABLE 4. Performance of estimators and ADP algorithm as a function of the number of samples in the training set.

FIGURE 11. Selected control u′ at each hour for Qmin = 0.68 under the
different policies.

FIGURE 12. Comparison of the aggregated instantaneous power
consumption at each hour for Qmin = 0.68 under different policies.

pico eNBs are needed and therefore the power consumption
increases. We illustrate that in Figures 12, 13 and 11 where
Qmin = 0.68. In this case, the energy savings of Oracle, ADP
ESIC and ADP ES with respect to the default configuration
are 22.54%, 20.43% and 9.84%, respectively. It is worth
mentioning that in Fig. 12 the instantaneous power consump-
tion of the Oracle policy exceeds that of our proposal in

FIGURE 13. Ratio of UEs satisfying the minimum throughput Tmin at each
hour for Qmin = 0.68.

FIGURE 14. Accumulated energy consumption in one day for different
values of Qmin.

three stages due to the activation power consumption spikes.
However, the Oracle policy attains the minimal overall daily
consumption, which is the objective according to Eq. (4).

For both Qmin values our proposal performs very closely
to the Oracle policy. This indicates that the the potential
efficiency losses associated to the approximation strategies of
our proposal are not significant, and the performance of our
ADP policies are very close to the optimal ones. It is worth
mentioning that when IC is not considered (ADP ES and
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Default configuration), the QoS threshold cannot be satisfied
during the traffic peak between stages 11th and 15th.
Finally, Fig. 14 illustrates the relation between the

QoS threshold, Qmin, and the best achievable daily energy
consumption (fulfilling this threshold). The higher the value
ofQmin, the more energy is needed to satisfy the QoS require-
ment. This figure also shows that combining the energy
saving and interference coordination mechanisms attains the
lowest energy consumption under any QoS requirement.

VII. CONCLUSION
This paper presented a novel stochastic control approach
addressing the energy saving and the interference coordina-
tion problems jointly. It is applied to an LTE-A HetNet to
minimize the energy consumption assuring QoS guarantees.
Considering the periodic pattern of daily traffic demands,
the problem is formulated as a finite horizon MDP where
we apply the CEC principle for the sake of computational
tractability. Specifically, we propose an ADP algorithm com-
bining the CEC principle and machine learning techniques.
We have shown the considerable improvement associated to
addressing energy saving and interference coordination prob-
lems jointly. In addition, our proposal allows a configurable
QoS requirement.

There are, however, two aspects left for future research:
The first one is clustering of sectors explained in Sec. V.
The fewer the sectors per cluster, the more similar the traffic
profile among clusters, which can increase the performance
of our proposal, at the cost of requiring more instances of
the ADP controller. On the other hand, larger clusters lead
to more variance in the traffic intensity of the sectors. This
trade-off has to be further investigated. Second, we assume a
daily periodic pattern in the traffic demandswhich can change
depending on the day. For example, the traffic demands
can change on weekends or during special events like sport
games or concerts. In the case of regular weekends or vacation
days the prediction is straightforward. However, for spe-
cial event the traffic demands can change depending on the
amount of people, the profile of these people, the type of the
event, etc. In order to address this issue, we can use external
information (e.g. event program in the city) or detect the
changes in the traffic patterns in an online fashion and adapt
the algorithm to them.
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